Nalcor Energy – Lower Churchill Project

SOBI Marine Crossing "Phase 2" Conceptual Design

ILK-PT-ED-8110-MR-RP-0001-01

	Comment	s:						Total # of Pages (Including Cover):494			
B1	5/30/2011	Issued For I	Use	S. Driscol	B. Madden	T. Ralph	B. Bugden	G. Fleming	P. Harrington		
Status/ Revision	Date	Reason For Is	sue	Prepared By	Checked By	Checked By	Checked By	Dept. Manager Approval	Project Manager Approval		
ONFIDENTIA	LITY NOTE:			cument contains inte distributed in whole							

SOBI Marine Crossing "Phase 2" Conceptual Design

ILK-PT-ED-8110-MR-RP-0001-01 Rev. B

Professional Engineers Stamp: (where required)

Table of Contents

Acronym	list	4
1.0 STRA	IT OF BELLE ISLE CROSSING	5
1.1 B	Background	5
1.2 S	cope of Work	7
2.0 Conc	eptual Design Solution	8
3.0 Feasi	bility Analysis and Approach	
	Occumentation Review	
	Pouting	
	Cables	
3.3.1	ABB High Voltage Cables	
3.3.2	Nexans Norway AS	
3.3.3	Prysmian Powerlink	
3.4 T	ransition Compounds	17
3.5 Ir	nsulation Types and Conversion Technology	
	ntegrated Fiber Optic Cable Installation	
	Burial Depth of Cables in HDD Boreholes	
	xternal Influences	
3.8.1	Icebergs	
3.8.2	Sea Currents	
3.8.3	Vessel Traffic	
3.8.4	Fishing Gear	
	Protection Methods	
3.9.1	Horizontal Directional Drilling (HDD) Landfall	
3.9.2 3.9.3	Rock Placement Trenching	
3.9.3 3.9.4	Trenched Landfall	
3.9.5	Shore-based Tunnel with Seafloor Piercing Landfall	
3.9.6	Micro-Tunneling Landfall	
3.9.7	Other Local Protection Technologies	24
3.10	Installation and Marine Operations	24
3.10.1	Cable Installation Vessels	
3.10.2	Other Intervention Vessels	
3.10.3		
3.10.4		
3.10	0.4.1 Inspection 0.4.2 Repair	
	tative Risks	
	nitments and Construction Schedule	
6.0 Capita	al Cost	

7.0 Operating Cost	
8.0 Repair Cost	
9.0 Spending Profile	33

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 5 of 333

Appendices

- Appendix A Proposed Seabed Crossing Route
- Appendix B Work Scopes 2010
- Appendix C Gap Registry
- Appendix D ABB Cable Cost
- Appendix E Nexans HDD Pulling Tension Confirmation
- Appendix F Nexans Cable Cost
- Appendix G Nexans MI Cross Sectional Breakdown
- Appendix H Prysmian Pulling Tension
- Appendix I Prysmian Study Results
- Appendix J Cu and Al Budgetary Costs
- Appendix K Vessel Traffic
- Appendix L Fishing Gear
- Appendix M HDD Feasibility Report
- Appendix N RT-1 and Assotrencher IV
- Appendix O Shore Based Tunnel to Seabed Techniques
- Appendix P Pro Dive Solutions
- Appendix Q COPS Report
- Appendix R AHMTEC Cable Protection System
- Appendix S Vos Product Innovation
- Appendix T Serpent Cable Flotation System
- Appendix U Cable Laying Vessel Specifications
- Appendix V Skagerrak Information
- Appendix W Scanmudring SCANmaskin Information
- Appendix X Cutting Grapnel
- Appendix Y Nexans Skagerrak Cable Repair Specifications
- Appendix Z SOBI Seabed Installation Schedule
- Appendix AA Cost Estimate
- Appendix AB Repair Cost
- Appendix AC Westney Risk Report

Acronym list

CAD	Canadian Dollars
CIV	Cable Installation Vessel
COPS	Continuous Operating Protection System
DCC	Document Control Center
DP	Dynamic Positioning
EA	Environmental Assessment
EIS	Environmental Impact Statement
EPC	Engineering, Procurement, Construction
FEED	Front End Engineering Design
GVI	General Visual Inspection
GPS	Global Positioning System
HDD	Horizontal Directional Drilling
HDPE	High Density Polyethylene
HIRA	Hazard Identification Risk Assessment
НММ	Hatch-Mott Macdonald
HVDC	High Voltage Direct Current
IRM	Inspection, Repair And Maintenance
ITP	Inspection Testing Plan
LCC	Line Commutated Conversion
LCP	Lower Churchill Project
МІ	Mass Impregnated
NDA	Non-Disclosure Agreement
NE-LCP	Nalcor Energy - Lower Churchill Project
NPT	Non-Productive Time
NPV	Net Present Value
PM&E	Project Management & Engineering
ROV	Remote Operated Vehicle
SOBI	Strait Of Belle Isle
ТВМ	Tunnel Boring Machine
TDR	Time Domain Reflectometry
UCS	Uniaxial Compressive Strength
VSC	Voltage Source Converter
wow	Waiting On Weather
WTO	Work Task Order
XLPE	Cross Linked Polyethylene

1.0 STRAIT OF BELLE ISLE CROSSING

1.1 Background

Nalcor Energy is headquartered in St. John's, NL, Canada. Its business includes the development, generation, transmission and sale of electricity; the exploration, development, production and sale of oil and gas; industrial fabrication and energy marketing. Focused on sustainable growth, the company is leading the development of the province's energy resources and has a corporate-wide framework which facilitates the prudent management of its assets while continuing an unwavering focus on the safety of its workers and the public. Nalcor currently has five lines of business: Newfoundland and Labrador Hydro, Churchill Falls, Oil and Gas, Lower Churchill Project and Bull Arm Fabrication.

The Churchill River, located in the Province of Newfoundland and Labrador, Canada, is a significant source of renewable, clean electrical energy; however, the potential of this river has yet to be fully developed. The existing 5,428 megawatt (MW) Churchill Falls Generating Station, which began producing power in 1971, harnesses about 65 percent of the potential generating capacity of the River. The remaining 35 percent is planned to be developed via two sites on the lower Churchill River, known as the Lower Churchill Project.

The Project includes two undeveloped hydroelectric sites and associated transmission systems, specifically the *Lower Churchill Hydroelectric Generation Project* (Generation Project) and *Labrador – Island Transmission Link* (Transmission Project). The Generation Project consists of proposed generating facilities at two sites in on the lower Churchill River in Central Labrador- a 2250 MW facility at Gull Island and an 824 MW facility at Muskrat Falls. The *Labrador – Island Transmission Link* is a proposed 1,100km High Voltage direct current (HVdc) transmission line connecting Central Labrador with the island of Newfoundland's Avalon Peninsula.

In November 2010, Nalcor Energy entered a Partnership with Emera Inc. to develop phase one of the Lower Churchill Project. This development includes the Muskrat Falls generating facility, the Labrador – Island Transmission Link and an additional transmission line, the *Maritime Transmission Link*, connecting the island of Newfoundland and neighboring province, Nova Scotia. Phase one of the Project is valued at \$6.2 billion.

Figure 1 - Schematic Depiction of the HVdc Route

1.2 Scope of Work

With reference to the Lower Churchill Project Gateway Process LCP-PT-MD-0000-PM-0001-01 (refer to Figure 2), the SOBI seabed crossing conceptual design is required prior to moving into Phase 3.

The scope of work during Phase 2 i nvolved development of a technically feasible solution for extending the HVdc transmission system across the SOBI. It has been determined that the seabed crossing would have cables placed on or beneath the seafloor. A SOBI Crossing Team Charter was established to outline the purpose, objectives, success factors, and roles for execution of the work. A specialized team was mobilized and technical feasibility analyses were undertaken to develop a conceptual design to meet the charter objectives. The results of the feasibility analyses, including the finalized conceptual design are described hereafter.

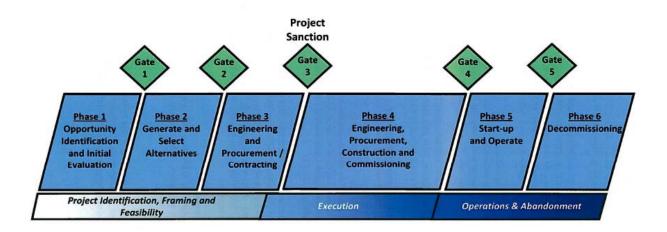


Figure 2 - Gateway Process

2.0 Conceptual Design Solution

The following sections detail the process for the cable installation on a conceptual design basis and include:

<u>Routing</u>

The cable corridor in which the conceptual cable route is to be defined is as shown in Figure 3. This corridor takes into account the landfall and protection methods discussed in this report. The estimated length is approximately 36 km with roughly 32 km on the sea floor. The route is depicted within a 500 m wide corridor with a 1500 m diameter circular seafloor piercing target zone for HDD. Detailed cable spacing and routing will be carried out in phase 3

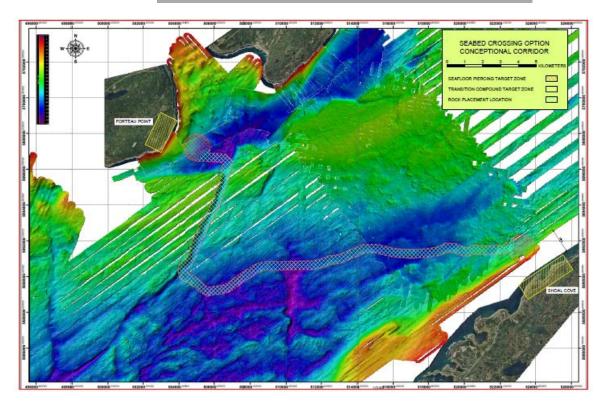


Figure 3 Conceptual Cable Corridor

<u>Cables</u>

The current conceptual cable design includes:

• Single Core (Copper or Aluminum conductor, pending detailed design)

- Mass impregnated paper insulated cables
- Double wire armor (DWA) in a counter-helical fashion to maximize pulling tension and provide rock armoring. Armor will consist of steel wire coated in Bitumen.
- Outer serving will consist of two layers of polypropylene yarn or high density polyethelyne as needed.
- Cables will each be rated to carry 450 MW at 320 kV.

The LCP preliminary cable design for the Strait of Belle Isle is within the limits of previous cable designs. While incorporating long-term field proven technology only. The cables for the 900 MW – 320 kV case could either be Mass Impregnated (MI) or Cross-linked Polyethylene (XLPE), with the former being the lowest risk design at this time due to the extensive global in-service track record. XLPE has been type tested at 320 kV, however the first 320 kV cable has not yet been installed. Long term aging tests have been completed as part of the type testing, but there is no significant field service data for 150 kV XLPE and above.

Transition Compounds and Terminations

At each side of the crossing, all three cables will terminate at a Transition Compound, to be designed, supplied, and constructed by the EPCM contractor. It is envisaged at this time that the cables will be pulled to shore then land trenched to the location of the transition compound. The compound location is not yet defined but will most likely be located 150 m to 1000 m from each shoreline. The compound will house the cable terminations, as well as any switch gear that is required for system operation. Actual footprint and height of the compounds will be determined by the EPCM and are based on isolation requirements and installation techniques of the terminations. The cables will enter the transition compound through a foundation penetration.

End terminations for each cable will reside inside the Transition Compound, and will be inclusive of the stand, insulator, and ancillary equipment. All equipment associated with the end termination will be supplied and installed as part of the cable supply contract.

Landfall - HDD

For both shore approaches, Horizontal Directional Drilling (HDD) will be ut ilized to protect the cables and will run from the shore to a point on the seafloor within the designated piercing target zone. This point will be approximately 2 km from the shoreline, however may become shorter or longer pending detailed design. The HDD solution will p rovide steel-lined boreholes for each shore approach. A footprint of approximately 2-6 acres is required on both Newfoundland and Labrador sides of the Strait to execute the HDD scope.

Cable Installation

The current philosophy is that the cable installation will include a subsea joint to allow for pull-in without laying an over length on the seafloor. The sequence for each current cable installation is as follows:

- Pull-in side 1
- Normal lay
- Abandon
- Pull-in side 2
- Normal lay
- Recover side 1
- Join
- Abandon

Deepwater Zones - Rock Placement

For the deepwater zones Rock Placement will be utilized to protect the cables between the HDD seafloor piercing on the Newfoundland side and the HDD seafloor piercing on the Labrador side. Each cable will be protected by a dedicated rock berm, which will be 0.5 - 1.5 m high with the potential for higher regions if additional protection is required. Preliminary studies suggest that the rock berm will have a nominal side slope ratio of 1:4 (rise:run) and will be 8-12 m wide at the base. The current rock has been based on a 8" D minus (maximum graded target size will be 8 inch diameter).

3.0 Feasibility Analysis and Approach

As of Q1 2010, a team was mobilized to progress feasibility of seabed cable installation with a target to complete a conceptual design by late Q4 2010. The following schematic outlines the process flow implemented by the team and timing for the feasibility study.

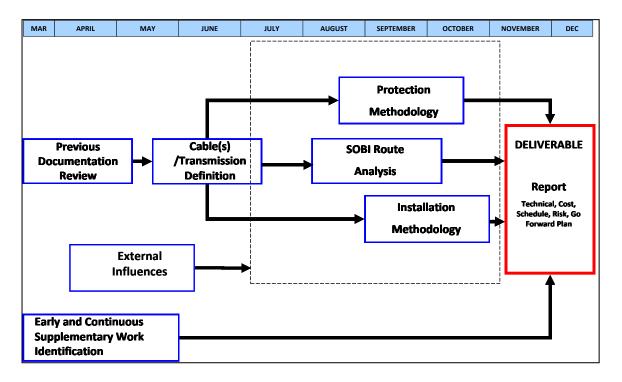


Figure 3 - Feasibility Study Execution Plan

The following is a summary of the schedule that was developed to progress the work. The detailed schedule is included in Appendix B.

	nalcor	Nalcor E	nerg	y - Lo	ower Chu	rchill Pro	oject						10	yout: PWP: TASKI	filter: PWP::		
	energy		Priorit	y Wo	rkscope Pac	kages										Printe	ed: 30
ty ID	Activity Name		OD	RD	Start	Finish	Performance % Complete	LC_WTO	PE	UDF BL Start	UDF BL Finish		2010	2	011	20	12
cope 10 - S(OBI Seabed Feasibility Work		252d	90d	05-Apr-10 A	09-May-11	88.13%			S-Apr-10	31-Mar-11						m
SC10 0550 181	PROGRESS SUMMARY- (LOE) - SOBI S8 Sea (urrent Study (AM0002)	117d	Od	23-Jun-10 A	09-Dec-10 A	100%	AM0002	GF	01-Jun-10	31-Jul-10						111
C10 0550 231	PROGRESS SUMMARY- (LOE) - SOBI 58 HDD		120d	Zd	05-Jul-10 A	05-Jan-11		LC-EN-017		06-Jul-10	20-Oct-10	ITTI	fiii	11111	tititi	mm	rit
C10_0250_237	PROGRESS SUMMARY - (LOE) Probabilistic A (LC-EN-013)	nalysis of Iceberg & Subsea Cable Route (By C-Core),	40d	12d	26-Jul-10 A	19-Jan-11	85%	LC-EN-013	GF.BB	21-Jul-10	16-Sep-10		-				
C10 0550 251	PROGRESS SUMMARY- (LOE) - SOBI SB Fishi	ng Studies (LC-EN-019)	120d	0d	30-Jul-10 A	12-Nov-10 A	100%	LC-EN-019	GF	15-Jul-10	29-Oct-10	itti	тшт	i fitti	tititi	mm	rit
C11_0550_281	PROGRESS SUMMARY- (LOE) - SOBI Technic (DC1401)	al Services - Cable Conduit Options (Piercings),	120d	Od	17-Aug-10 A	03-Nov-10 A	100%	DC1401	GF	L2-Jul-10	30-Sep-10		Ŧ				
10_0550_241	PROGRESS SUMMARY- (LOE) - SOBI Shore A	pproach Feas. Study (LC-EN-021)	120d	21d	23-Aug-10 A	01-Feb-11	80%	LC-EN-021	GF)5-Jul-10	30-Sep-10	1	ТЩ(-	*****	->>->>->	
C10_0550_221	PROGRESS SUMMARY- (LOE) - SOBI Prelimin	ary Rock Berm Design (LC-EN-018)	120d	0d	27-Aug-10 A	29-Nov-10 A	100%	LC-EN-018	GF	L2-Jul-10	30-Sep-10		-				
10_0390_153	PROGRESS SUMMARY- (LOE) - SOBI Shore A	pproach Feas. Study (LC-EN-022)	10d	b0	31-Aug-10 A	09-Dec-10 A	100%	LC-EN-022	GF.BM	4-Aug-10	07-Sep-10						
C10 0390 163	PROGRESS SUMMARY- (LOE) - ABB CABLE V	ENDOR FEAS. Study (WTO TBD)	62d	61d	12-Jan-11	07-Apr-11	0%	LC-EN-022	GF.BM	13-Jan-11	31-Mar-11						
AP Analysis		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31d	0d	05-Apr-10 A	04-Jun-10 A	100%			5-Apr-10	04-Jun-10	1			11111		11
OBI Decision	Indicators		04	b0	17-Sep-10 A	17-Sep-10 A	0%				15-Sep-10						
5C10 0210 185	SOBI CROSSSING DECISION		Dd	Od	· · · · ·	17-Sep-10 A	100%	IME	GF		15-Sep-10		•	OBÍ CRÓ	SSING DE	CISION	÷
eneral	500 01055110 000101		167d	90d	02-Aug-10 A	09-May-11	67.04%			3-Aug-10	16-Dec-10						
xternal Influe			179d	17d	28-Apr-10 A	26-Jan-11	86.74%			8-Apr-10				1-11-11	*****		i i i
		1. 0	159d	17d	03-May-10 A	26-Jan-11	85.6%				23-Sep-10						
	stic Analysis of Iceberg and Subsea Cat	ne koute)	167d	Sd	03-May-10 A	10-Jan-11	95.58%				17-Aug-10	11.11			*****		
Sea Currents			169d	9d	31-May-10 A	14-Jan-11	87.5%				07-Oct-10						
Fishing				0d			100%				19-Aug-10				+		
Vessel Traffic I			78d		28-Apr-10 A	17-Sep-10 A	73.42%										
	Definition / Cables		218d	73d	03-May-10 A	14-Apr-11				3-May-10							Ш
Transmission I			18d	b0	24-May-10 A		100%				21-Jun-10		e :				
Technology Re			23d	b0	03-May-10 A		100%				22-Jun-10						
Vendor Cable	Information / Preliminary Design		218d	73d	03-May-10 A		64.72%				20-Sep-10						
Conceptual De	esign Routing		64d	10d	05-Jul-10 A	02-Feb-11	96%			1-Oct-10	22-Oct-10			T			Ш
rotection			216d	54d	03-May-10 A	18-Mar-11	97.19%		0	3-May-10	25-Nov-10		111111		THIII		11
Rock Placeme	nt (Berm)		199d	54d	03-May-10 A	18-Mar-11	100%		0	3-May-10	05-Oct-10		Canada (al				
Rock Trenchin	ng		187d	5d	07-May-10 A	10-Jan-11	88.89%		c	7-May-10	13-Sep-10			.	*****	1	1î
Horizontal Dire	rectional Drilling		144d	7d	24-May-10 A	12-Jan-11	97.8%		2	4-May-10	25-Nov-10						11
Shore Approa	ches (Burying/Excavating/Cable Instal	. Techniques)	176d	31d	15-May-10 A	15-Feb-11	100%		1	5-May-10	18-Nov-10		0.000	1 1 1 1 1 1			11
 Remaining Work Critical Remaining Remaining Level 		npiete Page 1 of 2	6.0	t: Priority seline: ta Date: 3	Workscope Package	is - TDI Workplan		Date 29-Dec-10	Bi-Weekly R	port Progre	Revision is up to Dec. 24			0	Checked w ¹	Apj	provi

Figure 3 - Seabed Feasibility Summary Schedule

3.1 Documentation Review

A comprehensive documentation review was undertaken to understand all value added work completed prior to 2010. The scope involved reviewing all studies, reports, and project material for the past four decades. The objective was to identify all useful information that could be obt ained from past studies, and i dentify gaps in the information. These gaps and oppor tunities were then incorporated into each of the individual sub-scopes for the HVdc cable crossing of the Strait of Belle Isle.

Through the course of the two month review, more than 100 reports, 70 drawings and maps, and 120 p resentations were reviewed and assessed. An information and gap register was developed with over 850 line items for incorporation into the sub-scopes. This register is included in Appendix C.

3.2 Routing

The Strait of Belle Isle seabed crossing, although merely some 18 km from shore to shore, is extremely complex and pos es numerous challenges for installation and protection that include sea currents, icebergs, pack-ice, tidal forces, hard rock sea bottom, varying water depths, fishing activities, and vessel traffic. Prior to the current task force's engagement to engineer a solution, two 0.5 km wide seafloor corridors were selected by a previous consultant, in cooperation with Nalcor Energy. This work was carried out in 2007. These routes have been cited as part of the environment assessment process. To minimize impact on the overall project schedule and prevent any environmental related re-work, the mandate of the team was to adhere to portions of the previously selected routing where technically feasible.

Analysis of various external influences and p rotection methods demonstrate that a portion of the easterly route selected in 2007 potentially poses a high level of risk and is, on a go-forward basis, not considered to be feasible for a seabed crossing unless there are new developments in iceberg risk compensation This is primarily applicable to the shelf area on the Labrador side that is located in an area of a higher risk for iceberg scour than the deep channel portion of the western corridor. In view of the above, the western corridor, combined with some portions of the easterly corridor, is preferred for the conceptual design seabed crossing route. Due to the ability to achieve deeper water in less distance from shore, an alternate route to Shoal Cove has been considered as the base case and will be carried forward in the environmental assessment process (refer to Appendix A)

To develop an adequate solution for the entire westerly corridor combined with portions of the easterly corridor, a zone approach was implemented. The route was divided into the following zones (refer to Figure 4):

- Labrador Landfall (Zone 1) This zone starts on land that is nominally 150 to 1000 m from the shoreline, and extends to a water depth between 65 and 85 meters, near the Deepwater Channel. Protection in this zone is primarily required for tidal, pack ice, icebergs, and fishing.
- Deepwater Channel (Zone 2) A nominally 400 750 m wide deepwater channel that starts on the Labrador side and runs to approximately the midpoint on the route. Protection in this zone is primarily required for vessel traffic (dropped objects) and fishing.
- Eastern Corridor (Zone 3) A region of nominally 65 75 m water depth that runs from the Labrador Landfall to the Deepwater Basin. Protection in this zone is primarily required for vessel traffic and fishing and has a higher probability of iceberg scour.
- Deepwater Basin (Zone 4) A region of nominally 100 to 120 m water depth that runs from Deepwater Channel to the Newfoundland landfall in both corridors. Protection in this zone is primarily required for vessel traffic (dropped objects) and fishing.

 Newfoundland Shore Approach (Zone 5) – This zone that is nominally 150 to 1000 m from the shoreline, and extends to a water depth between 65 and 85 meters. Protection in this zone is primarily required for tidal, pack ice, icebergs, and fishing.

l'Anse au Loup N Labrador Labrador Shore Approach (Zone 1) Forteau l'Anse Newfoundland Shore Approach Eastern Corridor (Zone 5) (Zone 3) Deep Water Channel (Zone 2) Yankee Poin **Deep Water Basin** (Zone 4) Newfoundland

These zones are depicted in the following schematic.

Figure 4 - Subsea Corridor Zones

Upon review of the current work status for the sub-scopes as detailed in Section 3.0, and owing to deliverables and indicators received as of December 2010 as described in that section, it was determined that the following is the recommended solution for the SOBI seabed crossing. The cable routing is as shown in Figure 3. This route takes into account the landfall and protection methods discussed in this report. The estimated length is approximately 36 km with roughly 32 km on the sea floor. The route is depicted as a 500 m wide corridor with a 1500 m diameter circular seafloor piercing target zone. Detailed cable spacing and routing will be carried out in phase 3 with a recommendation that a no fish zone be established.

This solution is feasible from a technical and schedule perspective. Developments and further engineering may result in a change in design through Phase 3.

The following sections outline the work performed for each component of the study execution plan. For all sub-scopes a work task order (WTO), a separate contract, or an internal research task was implemented.

3.3 Cables

An assessment of HVdc cable technologies to meet the transmission parameters, as outlined in the design basis, was commenced early Q2 2010. Extensive research into the cable industry in general, and more specifically, cable suppliers and relevant projects was carried out to gain an understanding of HVdc cables. Of the global cable manufacturers, ABB, Nexans, and Prysmian were selected as candidates for conceptual study work as they are the three leading HVdc cable manufacturers in volume and technology and have the proven track record when it comes to large-scale HVdc projects. These three vendors have all indicated that the solution definition as defined above is feasible for the SOBI.

To further establish the feasibility of existing cable technologies for SOBI conditions, a scope of work was developed to be issued to cable manufacturers for development of a conceptual level design. The scope of work issued included a comprehensive suite of input parameters. Each supplier was asked to perform preliminary design calculations and feasibility work, as well as to provide a cable recommendation for the SOBI criteria. Output specifications were requested and were to include all parameters pertinent to transmission, installation, protection, inspection, repair and maintenance.

3.3.1 ABB High Voltage Cables

The scope of work was issued to ABB on July 5th and ABB has since reverted with a detailed proposal. The proposal has been reviewed and accepted by Nalcor. A service agreement has been established and work will be completed by ABB in Phase 3.

To acquire information required for the SOBI decision, a site visit was carried out with ABB on August 24th in Karlskrona, Sweden at their engineering and fabrication facility. Meetings held included extensive details on design, supply, and installation for the project with ABB key personnel.

Of the three cable types being considered in the scope of work, ABB has indicated that oil-filled is not a viable option. Oil-filled cables carry the inherent environmental risk in the case of damage, and are considerably more complicated and expensive to produce.

Mass impregnated cables will be detailed in the scope of work and ABB will carry out appropriate design development where required. Mass impregnated cables can meet the transmission requirement established for the project, and the acceptable level of reliability for the link. Mechanical, electrical, and thermal specifications for mass impregnated cables meet the requirements as established in the solution definition for seabed cable installation. ABB has an excellent cable manufacturing track record, with no reported failures due to manufacturing defects for protected cables. Budgetary costs are included in Appendix D.

Cross-linked polyethylene (XLPE) insulated cable design will also be developed on a conceptual level for the SOBI crossing. ABB has recommended XLPE as they favor the technology from both a manufacturing and installation perspective. Type testing has been completed for 320 kV, which included 1 year long term aging tests. XLPE cables at this voltage have not yet been installed; however budgetary costs are included in Appendix D (Same as above).

ABB has indicated that the installation of HVdc cables in the Strait of Belle Isle is feasible according to the solution definition and installation criteria including HDD pull-in.

ABB has indicated that a 2-3 year booking lead time for a factory slot is necessary to ensure timely delivery of cable product. This is subject to market conditions and is likely to change given the large number of potential upcoming submarine cable projects. Given the current market conditions, it was recommended that a factory slot should be booked in Q4 2011 or Q1 2012, to meet a 2015 installation window.

3.3.2 Nexans Norway AS

The scope of work was issued to Nexans on June 29th. Upon review of the scope, Nexans indicated that they would not require a contract to execute the study work as they considered it typical of a budgetary exercise. Nexans commenced work on the scope during early August.

A site visit with Nexans was carried out on August 26th-27th to discuss cable design, supply, installation, and protection. Their head office is located in Oslo, Norway where installation and des ign discussions occurred. Fur ther design, installation, and manufacturing details were discussed at their fabrication facility located in Halden, Norway.

The insulation type to be investigated as part of Nexans' study work will be Mass Impregnated. Oil filled cables have been des cribed by the company as being least desirable for application in the Strait of Belle Isle, due to environmental concerns and costly design and manufacturing processes. XLPE will also not be considered by Nexans as a viable option for the Strait of Belle Isle. Nexans sights concerns regarding the time proven reliability of XLPE. 150 kV XLPE cables have been type tested and qualified by Nexans, but they have currently not produced a cable for a project with a higher voltage.

As per Nexans commentary, mass impregnated type cables are a well proven technology. Nexans has an excellent mass impregnated cable manufacturing track record, with no reported failures due to manufacturing defects for adequately protected cables. A cable recently recovered and tested that was installed in 1975 indicated no signs of degradation within the core, insulation, and armoring.

The Nexans recommendation for our project is mass impregnated type cables. These cables will meet and exceed the requirements as defined in the solution definition and installation criteria including HDD pull-in. Reference email in Appendix E. Budgetary

costs for an MI cable with increased armor layers are included in Appendix F, along with the double armor layered cable that can meet our pull-in requirements. An MI cross-sectional breakdown for a cable with 2 armor layers is shown in Appendix G.

Nexans representatives state that a minimum of two years is required to book a factory slot, ideally in 2012 to meet the 2015 installation schedule. Nexans indicated that there are several projects on the horizon with thousands of kilometers of cable, many of which have target installation campaigns in the 2015-2016 installation seasons.

3.3.3 Prysmian Powerlink

The scope of work was issued to Prysmian on June 29th, 2010. Upon review of the scope, Prysmian indicated that they would not require a contract to execute the study work as they considered it typical of a budgetary exercise. Prysmian commenced work on the scope in early August.

Preliminary information regarding pulling tension and cable type was received on August 19th. This information confirms the HDD pull-in is feasible from a cable mechanical design perspective. R efer to Appendix H. On September 1st, the preliminary cable design was received from Prysmian. A design review was held with the company on Sept. 2nd. Refer to Appendix I for Prysmian cable design deliverables. Prysmian have indicated that the solution definition outlined above is fully feasible for MI cables. Prysmian currently has no track record for XLPE above 200 kV, but they are currently in the process of developing 320 kV, and hav e successfully type tested at 300 kV. A variation on the MI cable design is Polypropylene Laminate insulation which is designed to withstand higher temperatures and an oner ous service level higher than that of MI. Budgetary costs are located in Appendix J with pricing for both Aluminum and Copper conductors.

Prysmian's offices and factory are located in Milan and Naples, Italy, respectively. They have stated that a minimum of 2 years is required for a factory slot booking, or at best 2012 to meet the 2015 installation schedule.

3.4 Transition Compounds

To understand how the cables terminate at each end, research was conducted into the details of the Transition Compound. A formal scope of work was not issued to a contractor as Transition Compounds as the topic of Transition Compound design was included during discussions with the cable manufacturers.

The investigation indicated that all three cables will terminate at a Transition Compound on each side of the SOBI. It is envisaged at this time that the cables will be pulled to shore and subsequently land trenched to the transition compound location, which will be located 150 m to 1000 m from each shoreline. The compound will house the cable terminations, as well as any switch gear that is required for system operation. Actual footprint and height of the compounds are still under investigation and are based on isolation requirements and i nstallation techniques, however, at 320 kV, it is recommended that the terminations, at a minimum, need to have 3 m spacing. End terminations for each cable will reside inside the Transition Compound, and will be inclusive of the stand, insulator, and ancillary equipment. All equipment associated with the end termination will be supplied and installed as part of the cable supply contract.

Further work will be undertaken to completely understand the all requirements for design and erection of the Transition Compounds.

3.5 Insulation Types and Conversion Technology

The European suppliers have indicated that XLPE is only appropriate for VSC technology, and not LCC. With VSC technology, power flow can be reversed without reversing polarity, and this can happen many times per day. LCC on the other hand, must invert polarity with power direction changes. With polarity inversion, stress application doubles therefore giving high risk of accelerated insulation breakdown with XLPE.

One of the three Asian manufacturer's, JPower, have indicated that their XLPE technology is different from that of the European suppliers and can withstand polarity reverses. They have stated that type tests have been completed and can be provided.

3.6 Integrated Fiber Optic Cable Installation

Installation of a fiber optic cable can be carried out in parallel with the cable installation by one of two means: Firstly, the fiber optic cable can be a separate cable and bundled by straps during installation to the HVdc cable as it is overboarded. To accommodate pull-in through the HDD borehole, the fiber optic external cable could be un-bundled for that length of the cable, and would have to be pulled in through a fiber optic dedicated borehole.

Secondly, the fiber optic cable can be made internal to the HVdc cable by one of two means; immediately external of the lead sheathing, and beneath the extruded polyethylene sheath or, by replacement of one or two of the armor wires. Some concerns have been raised with this method including damage to the fiber optic cable when the HVdc cable is in high tension and during manufacturing.

3.7 Burial Depth of Cables in HDD Boreholes

When designing cables for burial in HDD boreholes, the depth of burial and the thermal resistivity of the surrounding rock or soil must be known for detailed design of HDD boreholes. Boreholes that are too deep or thermal resistivity values that are too high can limit the ability of the cables to achieve rated transmission capacity. Fur ther geotechnical investigation must be completed to determine thermal resistivity of the rock/soil surrounding the boreholes in order to design the cables. Borehole trajectories must be finalized through an interface process with cable supplier.

3.8 External Influences

External influences cover factors that pose a risk to the cables during the initial installation phase and throughout service life. These factors will have an influence on

Protection Methods, Cable Routing, Installation Methods, Cable Design, and Inspection, Repair and Maintenance (IRM). It was identified in the documentation review that further work was required to understand external influences that include icebergs, sea currents, vessel traffic, and fishing gear. Studies were undertaken to quantify the extent of these external influences, the details of which are included in the sections below.

3.8.1 Icebergs

As icebergs pose a significant risk to the installation and long term operation of the subsea cables, it is important to understand the probability of an iceberg coming into contact with the bottom and thus the installed cable.

In the past studies have noted a maximum depth that icebergs can scour the sea bed with water depths that range from 60 m to 110 m. The studies that have indicated a shallower max scour depth have provided a qualitative rationale to justify the numbers, while the reports that have indicated the deepest max depth have used theoretical situations and calculations without discussing the probability of such an event occurring, or are based on individual observations and not measurements. Thorough the literature review the majority of reports indicate that icebergs should only be considered a threat up to a depth in the range of 60-80 m. To be conservative this concept design is using 80 m and I ess to be the basis of protection for icebergs. As icebergs are further understood, this value may be revisited.

As an initial step to understand icebergs further, a study was conducted by C-Core to create a mathematical model to predict the occurrence of iceberg scour and provide a probability of impact along the proposed cable route. The study takes into accout all the most recent bathymetry and iceberg information. As part of this work, an iceberg scour database was generated. The results of this report can be found in Document number ILK-CC-CD-8110-EN-RP-0001-01 titled "Iceberg Risks to Subsea Cables in Strait of Belle Isle".

The report indicates that the probability of impact between icebergs and the bottom (or a cable on the seafloor) is reduced with water depth.

The final depth to which protection will be provided for iceberg scour will be decided when all study work, including potential iceberg observation programs, is completed and will be based on a probability analysis of impact. It is recommended that throughout the design, icebergs be studied further and the model updated as more information become available.

3.8.2 Sea Currents

There had been several studies in the past that reviewed the sea currents in the Strait of Belle Isle. These studies provided snapshots into the currents at various locations along the Strait and were conducted for various durations at various times of the year. In addition to the results of the monitoring, there were attempts to predict the maximum currents that may be experienced in the Strait.

Most recently, in 2007, these reports were compiled in a summary report that described the environmental conditions in the Strait of Belle Isle. However, this report did not provide concise summary of the sea currents.

A study was undertaken by AMEC in summer 2010 to provide a summary of the expected average and maximum currents for the various seasons at near surface, mid depth and near bottom of the Strait. This report is intended to provide an overview that can be used as an input into the preliminary design and for accessing the constructability of the subsea crossing.

The report "Summary of Ocean Current Statistics for the Cable Crossing at the Strait of Belle Isle" ILK-AM-CD-0000-EN-RP-0001-01 has been r eceived by Nalcor which provides average and maximum currents by season. The results from the report have been considered in the installation and protection methodologies. It is recommended that further current monitoring be carried out in the design phase.

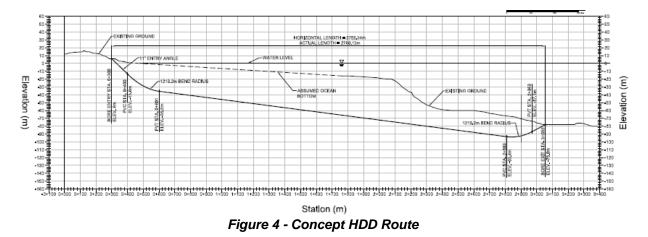
3.8.3 Vessel Traffic

The Strait of Belle Isle is a commercial shipping route therefore, traffic in the route is monitored and records maintained. The Canadian Coast Guard was contacted and has provided a listing of the commercial vessel traffic over the past two years. T his information has been used as an input into the cable protection design. Additionally, as the source of this information is established, ongoing and/or longer term records can be obtained should they be required (refer to Appendix K).

3.8.4 Fishing Gear

A significant amount of information regarding fishing activity has been obtained from a socio economic and environmental perspective, however recent information regarding fishing activities and gear utilized in the SOBI area was not available.

Canning and Pit Associates were contracted to execute a study on the current fishing gear and activities relating to the protection of the submarine cable.


The report "Review of Fishing Equipment – Strait of Belle Isle" ILK-CP-ED-0000-EN-RP-0001-01 has been received by Nalcor and indicated that the primary fishing activity in the Strait of Belle Isle is that of scallop fishing. This report provides information on the frequency of trawling activities, the types of gear and the potential impact forces that may be encountered due to the gear. See Appendix L for report

3.9 **Protection Methods**

3.9.1 Horizontal Directional Drilling (HDD) Landfall

Horizontal Directional Drilling (HDD) is a method of drilling a borehole with a shallow entry angle, controlling the route of the drilled hole and exiting the surface at a controlled location. For the SOBI application, the drilling equipment will be set up on shore and will drill out under the landfall zone and continue below the seafloor to its exit point. Once complete, this borehole will be used as a conduit for the HVdc cable to be pulled through.

Hatch Ltd. (Hatch Mott MacDonald - HMM) was contracted to complete a feasibility study of using HDD as a means of protection for the cables. This study "Feasibility Study for the Strait of Belle Isle" H336344-RPT-CA01-250 provides an assessment of current horizontal directional drilling technology to provide a conduit out to waters of significant depth to avoid the risk associated with pack-ice impact / scouring and to reduce the risk of iceberg impact to an acceptable level. A long with providing the feasibility of drilling the required length, this study addressed constructability and provides a construction schedule and cost estimate.

The report has confirmed that a HDD bore hole, complete with steel liner drilled to 80 m water depth is feasible on both sides of the strait. It has identified a concept profile for both sides as shown in Figure 7, with lengths of 1.2 km on the Labrador side and 2.7 km on the Island side. Reference Appendix M for details.

3.9.2 Rock Placement

The primary method of protection of the cable between the boreholes is by means of constructing a rock berm over the cables. This berm will provide on bottom stability of the cable and will provide protection from fishing activities.

A preliminary rock berm design was completed by Tideway "Lower Churchill Project Rock Berm Concept Development Study Report" document number ILK-TW-ED-0000-EN-RP-0001-01. The report has indicated that a berm is constructible in the conditions that are likely to be experienced in the Strait of Bell Isle. It also addresses minimum design rock cover and includes cost estimates.

3.9.3 Trenching

Trenching has been h eavily investigated for the Strait of Belle Isle and c an be appropriately broken into two categories, namely, rock and soft sediment trenching. A scope of work was developed to understand trenching capabilities globally from a supply and technical limits perspective. The scope of work centered on rock trenching as a potentially feasible solution for cable protection in the Strait seafloor conditions.

Extensive research was carried out as to who the vendors were that possessed the technology to trench in hard rock conditions. It was determined through correspondence and discussions with industry experts that no such technology exists. Currently there are only general concepts that have not been proven in rock over 60 MPa. Two of the most powerful trenchers in the world today are the RT-1, owned and operated by CTC Marine, and t he Asso Trencher IV, owned and operated by Asso Divers. T hese trenchers are capable of cutting rock up to a UCS value of 60 MPa. See Appendix N for specs on the RT-1 and Asso Trencher IV.

Soft sediment trenching on the other hand, is utilized extensively on submarine cable projects throughout the world. The technology is very well established and there are numerous companies that supply and oper ate soft sediment trenching technology. Among the companies with the largest and most powerful equipment, and installation vessels, resides CTC Marine, Asso Divers and LD TravOcean.

Trenching could be considered as an optimization method for cable protection in the Strait of Belle Isle. A very high percentage of the seafloor on the designated cable route consists of bedrock with minimal overburden. The portions with overburden deep enough for cable burial are minimal, but the depth maybe be sufficient to protect the cable in an optimization scenario pending detailed design. Further investigations into company equipment are required to provide confirmation of suitability for Strait of Belle Isle conditions.

3.9.4 Trenched Landfall

The traditional landfall has been considered as a potential alternative to HDD.

The world leaders of landfall design, Royal Boskalis Westminster N.V and Tideway Offshore Contractors have been awarded a scope of work detailing landfall methodology. Nalcor Energy conducted a visit to the Netherlands with Boskalis and Tideway to discuss the potential for a trenched land fall in the SOBI.

A traditional landfall consists of cable protection from shore through the water line to approximately 20 m water depth. The envisaged protection would include three individual trenches excavated using a backhoe dredger with the possibility of drilling and blasting at locations of highly competent bedrock. Due to the amount of rock that would have to be excavated there is a possibility that drilling and blasting would be completed in a previous season or that two sets of equipment would be mobilized to complete the installation in one season. The feasibility and detail of the trenched landfall is provided in:

- Boskalis Shore Approach Feasibility Study Strait of Belle Isle (SOBI) cable crossing – ILK-BV-ED-0000-EN-RP-0001-01
- Tidway Shore Approach Feasibility Study Report ILK-TW-ED-0000-EN-RP-0002-01

3.9.5 Shore-based Tunnel with Seafloor Piercing Landfall

The report DC1130 "Submarine Cable-Strait of Belle Isle - Design, Method, Cost and Plan" which was executed by Stanett SF of Norway in 2007 / 2008 on a subcontract to Hatch Ltd. recommended that, as the preferred crossing solution, a 1.5 km long shorebased tunnel be constructed on the Labrador side of the Strait. The tunnel would extend out underneath the seabed to a point where the water depth above the termination of the tunnel would be 70 m. The 70 m water depth was based on that being the depth required to avoid iceberg impact on the cables. The subsea tunnel itself would terminate some 75 meters below the seabed. Microtunnels would be drilled vertically upwards from the end of the main tunnel to pierce the seabed. From there, the HVdc cables would be pulled-in to the shore-based tunnel through the microtunnels and therein joined to HVdc cables that would have already been installed in the main tunnel downward from the landward end. Special means would be taken to seal the microtunnels (i.e. using J-tubes / packers) to preclude the ingress of seawater into the main tunnel. The noted report also recommended the above approach as an option on the Newfoundland side of the Strait wherein the shore-based tunnel would need to be some 3.3 km long to reach the same water depths.

It was indicated in the referenced report that subsea tunnel to seafloor piercings are a common and mastered technique.

In 2010 a scope of work was developed to further investigate the technical feasibility of utilizing this technology in the SOBI. The scope was issued to Statnett. A main focus of the scope was for Statnett to provide further / definitive information regarding the ideas and concepts described and recommended by them in DC1130.

Part 1 of the noted report has been received. It is very clear from the report that the recommendations made by Statnett in the 2008 study essentially have no precedent. The report specifically states that "*this method has not been applied for a power cable before*". It also notes that, with respect to the Troll A gas platform constructed in the 1990's, the concept was considered but was not implemented. With respect to the sealing arrangement that would need to be implemented for the SOBI solution, the report notes that "*there is up to now no direct reference for the potential SOBI case where it would be a need for sealing against ca 7 bar water pressure*". There has been an example of a project that utilized a subsea piercing for a gas pipeline pull-in, but presently this technology is not easily transferred to HVdc cables.

Following the completion of Part 1, Part 2 was also received from Statnett. With the additional details contained in Part 2, which was an elaboration of Part 1, there is still no precedent for applying this method to the Strait of Belle Isle.

Preliminary discussion with the 3 major cable vendors involved in the conceptual design have indicated that they have not executed, nor have any knowledge of projects where cables have been installed through a piercing of this nature.

See Appendix O for further details.

3.9.6 Micro-Tunneling Landfall

Microtunneling is a process that uses a remotely controlled Microtunnel Boring Machine (MTBM) combined with the pipe jacking technique to directly install product pipelines underground in a single pass. Nalcor Energy has investigated the feasibility through consultation with Tideway and has determined that micro-tunneling to the depths needed for the SOBI crossing are outside the limitations of today's technology. There remains a possibility of incorporating a more in depth study of the technology into existing landfall SOW to detail current and future micro-tunneling technologies.

3.9.7 Other Local Protection Technologies

For locations of potential increased risk several different options including combinations of protection methods can be ut ilized. Concrete mattresses consist of high strength concrete segments linked together with a network of high strength polypropylene ropes to form a continuous flexible concrete barrier. The designs vary from different suppliers however a local company, Pro-Dive Solutions, offers various designs outlined in Appendix P. Concrete mattresses are used for protection from external forces throughout the cable and oil and gas industry. The design can be made as robust as needed for the application of protection. Installation can be performed from a light intervention vessel with an adequate crane and an ROV.

Another form of mattressing is the Continuous Operating Protection System (COPS) offered by LD TravOcean. COPS is a system which is designed to lay a continuous concrete mattress of approx 500 m length each on the seabed over the cable. The grout is mixed on a support vessel and pum ped down to the subsea crawler (remotely operated) to fill the mattress. Details of the COPS are outlined in Appendix Q.

Articulated steel half shells can be utilized as primary protection if bolted to the seabed bedrock using saddle clamps. The articulated pipes can also be used as secondary protection underneath mattresses or rock dumping in high iceberg return period scour locations along the SOBI Lay route. Several possible companies exist that provide this service including AHMTEC Cable Protection Systems and Vos Product Innovations BV. Refer to Appendix O and P for further information and correspondence regarding the articulated pipe protection.

3.10 Installation and Marine Operations

The current installation philosophy consists of the installation of three HVdc cables, each with one subsea joint, from a Cable Installation Vessel (CIV). Cable installation vessels that have been considered for this project are outlined in section 3.9.1.

The envisaged process includes transpooling the cables onto a capable CIV from the manufacturing plant and transporting to field. Possible manufacture locations are outlined in section 3.2 but are not limited to these specific sites. Cable installation will commence subsequent to the completion of all HDD bore holes to limit scheduling risk.

Initiation would consist of the abandonment of the first end (capped by a pulling head or prepared with Kellems Grips) at the location of the first bore hole on either side of the SOBI. Details of the HDD bore hole configuration are illustrated in section 3.8.1. A line

from a high powered winch located onshore will be passed through the bore hole to the opening on the seafloor. An ROV will be utilized to secure the pulling head to the winch line and the vessel will pay out as the winch hauls the cable through the bore hole. Once the cable is secured onshore the CIV will perform normal lay to the proposed joint location and the cable 2nd end will be abandoned. The process would be repeated from the opposite side of the SOBI until both cable 2nd ends are positioned at the joint location.

There remains a possibility that the pull–in tensions will be above the limit of the cable. In this instance the cable could be fed down through the bore hole. The potential for this occurrence is highest at the Newfoundland side. The location of the joint would then be located close to the exit on the Newfoundland side.

Sufficient overage (~ 3 x water depths) would be included in the cable length to allow for the jointing operation. The full jointing operation details are incorporated in the IRM section 3.9.4. Protection removal and r einstatement is not applicable during initial installation. The general procedure includes recovery of the initially abandoned cable to the CIV and positioning both ends parallel to each other in the jointing house on deck in preparation for jointing activities. A jointing house, specified in section 3.9.4.2, will be included on the CIV. Subsequent to the jointing activity the joined cable would be abandoned using an A-Frame or similar device and abandon in an ohm shape.

Alternate Installation methodologies for the additional landfall technologies are understood and considered standard in the industry.

The installation for a traditional shore approach could include such technologies as a Seaserpent Cable Flotation for cable control due to currents. Details of the Seaserpent Cable Flotation system are illustrated in Appendix T. Included in the normal lay section could be the addition of articulated pipe for localized protection for potentially increased risk sections. This is normal practice and has minimal impact on lay speed.

Increased cable segmentation may be considered the optimal solution if the limitations of vessels, carousels reels or transportation deem necessary. This would increase the time of normal lay significantly, however shouldn't impact first power.

This installation methodology has been formed from the contribution of consultations with Nexans, Prysmiam, ABB, Global Marine, Scanmudring, Five Oceans Limted, Boskalis, Tideway and Van Oord as well as research into technologies.

3.10.1 Cable Installation Vessels

Cable installation vessels have been examined considering the SOBI cable installation applicability. The equipment and specifications have been examined in detail and are either currently capable or would be capable with a few inexpensive, standard alterations. The following vessels are considered as viable cable installers:

Vessel	Owner	Charter		
Gulio Verne	Prysmian Powerlink	Prysmian Powerlink		
Skagerrak	Nexans AS	Nexans AS		

Team Oman	Team IV Ltd.	ABB				
		Global Marine System				
Cable Innovator	Global Marine System Ltd.	Ltd.				
		Global Marine System				
CS Sovereign	Global Marine System Ltd.	Ltd.				
North Ocean 102	North Sea Shipping A/S	McDermott				
	Visser and Smit Marine	Global Marine System				
Stemat Spirit	Contracting	Ltd.				
M/V Elektron	Statnett Elecktron AS					
Teliri	Elettra TLC SPA	Elettra TLC SPA				
ASEAN Explorer	ACPL Marine Pte. Ltd.	ASEAN Cableship				
ASEAN Restorer	International Cableship Pte. Ltd	ASEAN Cableship				
		Тусо				
CS Teneo	Tyco Telecommunications	Tellecommunications				
CS Global		Тусо				
Sentinel	CS Global Sentinel LP	Tellecommunications				
Emerald Sea	McDermott International	McDermott International				

In depth datasheets and details of the above vessels are included in Appendix U.

Boskalis and Tideway are in the process of converting the Seahorse into a c able installation vessel. Tideway is also constructing the conversion of the Rolling stone into a cable installation vessel. These vessels will have a high cable capacity compared to today's standards.

To satisfy a turnkey manufacture and installation campaign, the cable suppliers outlined in section 3.9.1 would need a capable Cable Installation Vessel. As indicated above the Installation requirements will be fully satisfied by the Nexans Skaggerrak cable installation vessel. A detailed review of the vessel capabilities and installation of techniques was carried out while members of the team visited Halden, Norway. The extensive specifications are outlined in Appendix V.

ABB could use the Team Oman or the Aker Connector as installation vessels for the Strait of Belle Isle, dependent upon m arket conditions and av ailability. The Aker Connector details are not yet available as the vessel is not scheduled for completion until 2012.

Prysmiam would incorporate the highly capable Gulio Verne.

3.10.2 Other Intervention Vessels

The majority of CIV's have smaller intervention vessels on board to assist with termination and initiation onboard. Therefore, in this event, other intervention vessels are not needed. Maersk and A tlantic Towing currently have a f leet of intervention vessels that are experienced with subsea intervention. These companies also provide guard or patrol vessel for installation and protection activities.

3.10.3 Transportation

The transportation of cables in their entirety as well as the transportation of all installation equipment would ideally and likely be completed by the CIV. If there was an excess of cable or equipment a contracted barge would be fully capable to assist. Adequate barges with substantial deck space are available through Giant Marine, Jumbo Shipping and Big Lift Shipping.

3.10.4 Inspection, Repair, Maintenance (IRM)

3.10.4.1 Inspection

The envisaged inspection program will consist of a General Visual Inspection (GVI) campaign by ROV for 3 consecutive years post installation. This inspection will have emphasis on rock berm deterioration and general anomalies. The GVI campaign will be re-addressed following the 3 consecutive years to determine how frequent the inspection will need to be performed.

3.10.4.2 Repair

As losses of income are high for each day subsequent to a fault it is imperative that all steps for the repair are in place prior to damage. Subsequent to a fault the succeeding steps are generally followed:

- Fault Finding
- Securing of repair vessel contract
- Planning of repair operation
- Mobilization of repair vessel and equipment
- De-burial of the faulty cable portion
- Loading of spare cable and jointing kit
- Jointer crew embarks
- Repair effected and protection re-established.

Fault Finding

A number of methods for fault location are available. Cable damage can range from high-ohmic fault to low-ohmic insulation damage or a possible complete rupture of the cable.

Time domain reflectometry (TDR) is based on an electric impulse, which is sent into the faulty cable conductor. Knowing the impulse propagation velocity, one can calculate the distance to the fault by measuring travel time.

Bridge measurements are based on resistance measurements in the conductor from one cable end to the fault.

The above methods will find a fault within a few percentage points of the overall length. For a 35 km cable this generalizes the fault to a 350 – 750 m length location. For fine localization a signal current can be sent into the conductor from shore. At the cable fault the signal current exits through the damaged insulation which creates a difference in magnetic field on both sides of the fault location. A search coil on-board of the search vessel records the characteristics of the magnetic field from the signal current and records a significant change in signal intensity. The search coil can be mounted on an ROV for finer accuracy. The accuracy of this method is twice the water depth from coil location; therefore if the coil is located on an ROV the fault can be located within a couple of meters.

Spare Cable / Equipment

Spare cable in the magnitude of 2.5 - 5 percent of the installed length will be manufactured with the full length cables as well as a joint kit which would include a paper wrapping machine, soldering equipment and a lead tube.

Preparation for Recovery

Scanmudring has provided information on rock berm removal for cable repair and has proven feasible in the SOBI environment. The ROV that would be used for this operation is the Scanmaskin. Details of equipment and general costs are outlined in Appendix W. The Scanmudring equipment can be utilized on a cable installation vessel used for the repair or on an independent vessel.

Water jetting equipment can also be utilized as a less invasive and perilous alternative. The size of rock that is currently proposed is within the capabilities of such equipment.

If a fault occurs within the bore hole the cable would be cut at the mouth of the bore hole and the winch and winch line utilized during installation would be operated to and attached to the cable head while the cable vessel recovers the cable to deck. The operation would then be consistent with the current repair procedure with the winch and winch line reinstating the cable subsequent to the repair.

Repair Vessel

The vessel used for repair would be a cable lay vessel. The load capacity would eclipse the weight of handling the spare cable and handling equipment. Specifications for the vessel include a large open deck with sufficient space for the jointing house, cable engines, winches, cranes etc. A turntable or cable hold for the spare cable must be installed on the vessel as well as chutes to deploy the cable and joint overboard. The vessel must be equipped with an ROV for recovery. The environmental conditions and proximity to land for this project dictate that the repair vessel would be Dynamic Position (DP) equipped.

Repair Operation

The repair procedure completely depends on the depth and location of the fault. The location of the fault for the SOBI HVdc cable can occur in one of two scenarios. It could be located in the horizontally directionally drilled (HDD) bore hole or buried underneath the rock berm. A generic repair operation would consist of the following:

The cable is cut at the fault site. Cutting the cable can be completed with an ROV cutting tool as well as a cutting grapnel that is deployed similar to an anchor and dragged along the line. The faulty section of cable could be several hundred meters in length depending on the damage. The repair vessel would position itself over the cut section of cable that has both ends prepared with a transponder, a ground and ROV friendly clamp ensuring no water ingress. The repair vessel then would proceed to recover one end of the existing cable and position it in the jointing house. The jointing house can often be positioned bow to stern or port to starboard and this directly affects the position of the carousel as the spare cable and existing cable must be parallel in the jointing house to join. Subsequent to the jointing the joint and the spare cable must be laid as the repair vessel travels to the location of the other cut end of the existing cable. Recovery is performed similar to the recovery of the other end. The existing cable must be deflected around a structure that can deploy the cable after the join has been laid. The repair vessel would have a standard method of cable deployment. This structure is built for purpose and is determined from the deck layout. The spare cable section would be laid down in an ohm like overage loop.

Nexans has provided Nalcor Energy with their general description of a repair operation or the Nexans Skagerrak vessel. This general description is detailed in Appendix Y.

The Scanmaskin would then be available to reinstate the rock berm protection on the cable and for the overage loop other local protection technologies outlined in section 3.8.7 would be utilized either during abandonment (articulated pipe) or subsequent to abandonment.

4.0 Qualitative Risks

A Westney Risk Assessment has been completed and the major risks identified. The document is live and will be updated as necessary.

5.0 Commitments and Construction Schedule

Long lead commitments, comprised of cable procurement factory slots and v essel booking, are required to achieve the desired construction schedule. As indicated by all three major cable vendors, the timing to place an order for cables and vessels slots to meet the 2015 installation season is currently late 2011 through early 2012. If seabed cable installation progresses, slot and vessel availability will be closely monitored to identify opportunities and threats to the commitment schedule.

For seabed cable installation two schedules have been considered, a two season aggressive installation schedule (2015 and 2016) and a t hree season window conservative installation schedule (2014, 2015, and 2016). There is no difference in work duration between the schedule options, however, the three season schedule completes installation early and allows for work roll-over into the 2016 season. For the purpose of this comparison the conservative 2014 start construction schedule has been selected. The following is the high level construction schedule. The detailed schedule is included in Appendix Z.

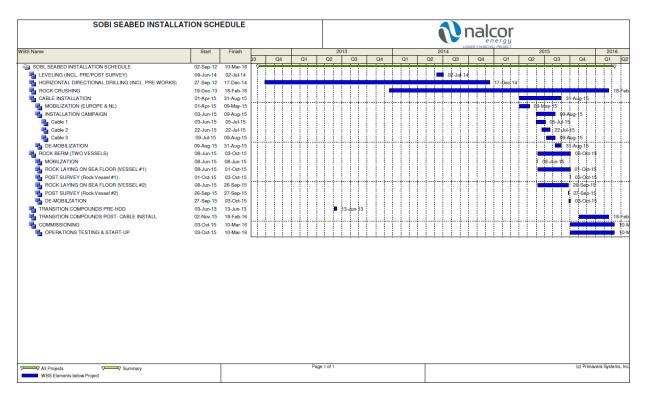


Figure 5 - SOBI Seabed Installation Schedule

6.0 Capital Cost

A Class 4 c ost estimate (+30/-30%) has been prepared for the complete seabed crossing option inclusive of cable supply and installation, and protection. The estimate currently totals \$280 MM CAD, the high level summary of which is outlined in the table below. The detailed cost estimate is included in Appendix AA, and identifies unit rates, quantities, and assumptions.

S	SOBI Seabed Crossing - Feasibility/Study Estimate										
	Date 15-Sep-10										
	Estimate is Study/Feasibility Level (+/- 30% Accuracy, 1-15% Engineering Complete)										
	General Assumptions / Estimate Basis:										
1	3 Single Core Submarine cables.										
2	Protection methodology maintains a high level of reliability.										
3											
4	Estimate does not include contingency.										
5	Estimate does not include PM&E.										
6	Estimate does not include Waiting on Weather (WOW) nor Non-Productive Time (NPT).										
7	Estimate does not include allowance for future recovery and repair operations.(priced separately)										
8	Estimate does not include annual inspection allowance. (priced separately)										
	Pre/Post Survey ⁽ⁱ⁾										
	HDD Site Works ⁽ⁱ⁾										
	Seabed Leveling										
	Cable Supply (3x)										
	HDD										
	Cable Installation										
	Rock Berm (1/4 slope with 1 m cover)										
	Total \$ 280,429,494 CAD (2010 Dollars)										
	(i) Assumed Allowance										

7.0 Operating Cost

There is no direct operating nor maintenance costs associated with seabed cable installation, with the exception of visual inspection. Inspection will be required in two regions, the terminations in the transition compounds and the rock berm on the seabed.

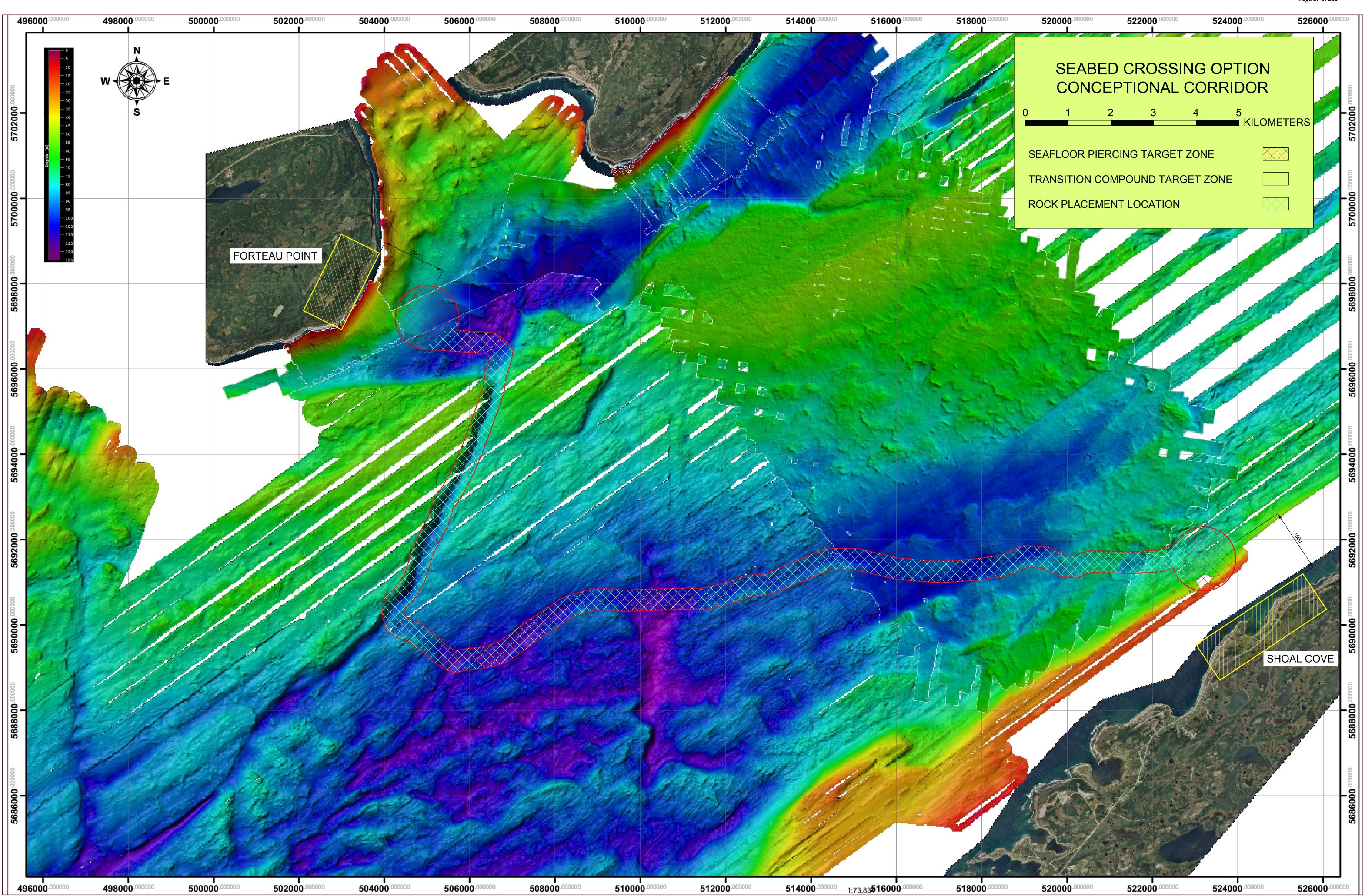
The three terminations in each transition compound (six in total) are to be inspected annually to assess leakage of insulating fluid and deterioration. This is a low cost activity that does not required significant recourses.

The rock berm with a nominal length of 32 km will initially require a general visual inspection (GVI) annually during the summer months to assess berm condition and identify any degradation due to erosion (sea currents) or impacts (anchors / fishing). This inspection will involve flying the rock berms with an ROV and visually assessing deterioration. A local supply-type vessel with an observation class ROV or better will be required. The cost of the annual inspection is assumed to be approximately \$500,000. This is based on u tilizing a supply vessel with ROV spread from either St. John's or Halifax (~\$100,000 / day) with a 1 day mobilization duration, 3 day inspection duration, and 1 day demobilization duration. Pending favorable results of the initial few annual inspections (no berm deterioration detected) the GVI frequency could be reduced to once every two years (or longer) for the remainder of the service life.

8.0 Repair Cost

As indicated by all three vendors, no c ables in operation have failed due t o manufacturing defects. All failures have been due to external influence such as fishing snags. Although cable protection will be designed to be sufficiently robust and a failure during the service life is unlikely, it may be possible in an extreme case to sustain damage and hence execute a repair.

For repair on a seabed cable an intervention vessel will be required with at a minimum a cable jointing area on the deck, a functioning crane, a work class ROV, and a suction / excavation type ROV. This type of vessel could be mobilized from the fleet of vessels based out of St. John's or Halifax. Also required would be a s pare section of cable (included at the time of order and stored locally) and a cable vendor repair team with tools and consumables for execution of a repair. Localized protection for the expansion loop will also be required and will likely include articulated pipe, rock, or mattresses.


A preliminary cost has been developed for a repair and is \$7.7 MM CAD. Breakdown of the cost is included in Appendix AB.

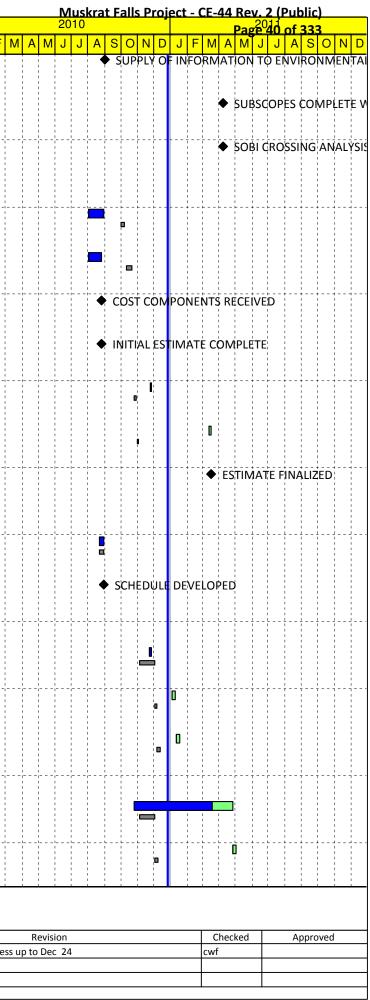
9.0 Spending Profile

The following is a preliminary envisaged capital spending profile for the project that indicates the percentage of the CAPEX estimate spent between now and 2016.

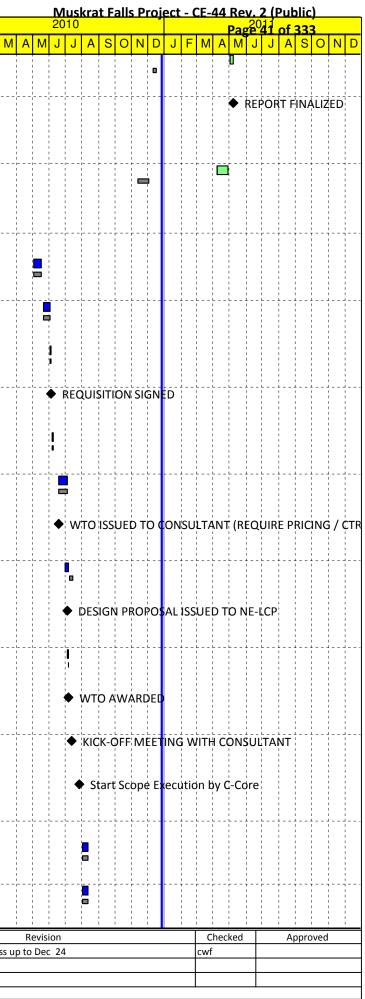
Year	2011	2012	2013	2014	2015	2016
% CAPEX	0%	10%	20%	30%	35%	5%

Appendix A- Proposed Seabed Crossing Route

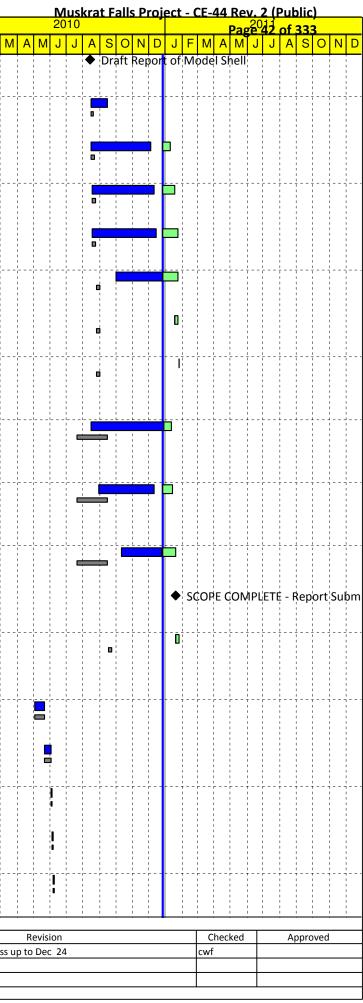
Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 37 of 333


Appendix B- Work Scopes 2010

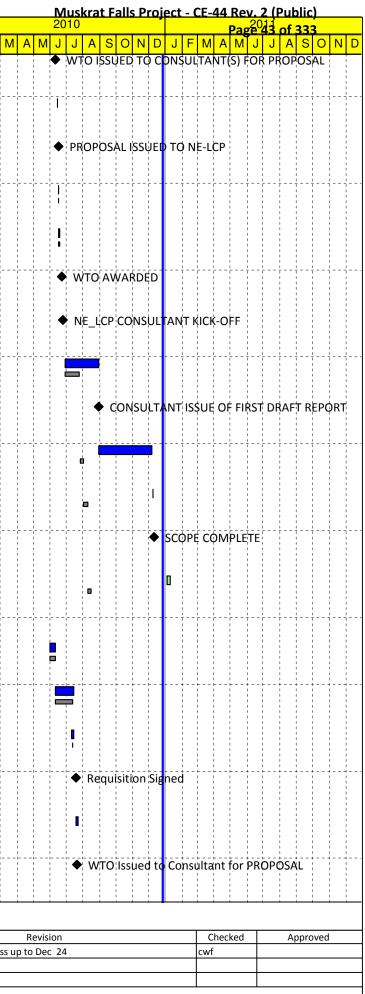
	nalcor	Ν	alcoi			Churchil	-				
	LOWER CHURCHILL PROJECT			Priority \	Norkscop	e Packages					
ivity ID	Activity Name	OD	RD	Performance % Complete		Start	Finish	PE	UDF BL Start	UDF BL Finish	
									Otdit		JFM
•	OBI Seabed Feasibility Work										
SC10_0550_181	PROGRESS SUMMARY- (LOE) - SOBI SB Sea Current Study (AM0002)	117d	Od	100%	AM0002	23-Jun-10 A	09-Dec-10 A	GF	01-Jun-10	31-Jul-10	
SC10_0550_231	PROGRESS SUMMARY- (LOE) - SOBI SB HDD Studies (LC-EN-017)	120d	2d	99.5%	LC-EN-017	05-Jul-10 A	05-Jan-11	GF	06-Jul-10	20-Oct-10	
SC10_0250_237	PROGRESS SUMMARY - (LOE) Probabilistic Analysis of Iceberg & Subsea Ca Route (By C-Core), (LC-EN-013)	ble 40d	12d	85%	LC-EN-013	26-Jul-10 A	19-Jan-11	GF.BB	21-Jul-10	16-Sep-10	
SC10_0550_251	PROGRESS SUMMARY- (LOE) - SOBI SB Fishing Studies (LC-EN-019)	120d	0d	100%	LC-EN-019	30-Jul-10 A	12-Nov-10 A	GF	15-Jul-10	29-Oct-10	
SC11_0550_281	PROGRESS SUMMARY- (LOE) - SOBI Technical Services - Cable Conduit Options (Piercings), (DC1401)	120d	0d	100%	DC1401	17-Aug-10 A	03-Nov-10 A	GF	12-Jul-10	30-Sep-10	
SC10_0550_241	PROGRESS SUMMARY- (LOE) - SOBI Shore Approach Feas. Study (LC-EN-02	1) 120d	21d	80%	LC-EN-021	23-Aug-10 A	01-Feb-11	GF	05-Jul-10	30-Sep-10	
SC10_0550_221	PROGRESS SUMMARY- (LOE) - SOBI Preliminary Rock Berm Design (LC-EN-018)	120d	0d	100%	LC-EN-018	27-Aug-10 A	29-Nov-10 A	GF	12-Jul-10	30-Sep-10	
SC10_0390_153	PROGRESS SUMMARY- (LOE) - SOBI Shore Approach Feas. Study (LC-EN-02	2) 10d	0d	100%	LC-EN-022	31-Aug-10 A	09-Dec-10 A	GF.BM	24-Aug-10	07-Sep-10	
SC10_0390_163	PROGRESS SUMMARY- (LOE) - ABB CABLE VENDOR FEAS. Study (WTO TBD)) 62d	61d	0%	LC-EN-022	12-Jan-11	07-Apr-11	GF.BM	03-Jan-11	31-Mar-11	
GAP Analysis											
SC10_0210_135	Identification of reports	5d	0d	100%	IWS	05-Apr-10 A	09-Apr-10 A	GF	05-Apr-10	09-Apr-10	
SC10_0210_145	Review of Reports (Gap Analysis)	30d	0d	100%	IWS	12-Apr-10 A	04-Jun-10 A	GF	12-Apr-10	04-Jun-10	
SC10_0210_155	Review of Posters and Maps	2d	Od	100%	IWS	12-Apr-10 A	21-May-10 A	GF	12-Apr-10	21-May-10	
SC10_0210_165	Develop a categorized gap register	21d	0d	100%	IWS	26-Apr-10 A	24-May-10 A	GF	26-Apr-10	24-May-10	
SC10_0210_175	PREVIOUS DOCUMENTATION REVIEW COMPLETE	Od	0d	100%	IWS		24-May-10 A	GF		24-May-10	
SOBI Decision	Indicators										
SC10_0210_185	SOBI CROSSSING DECISION	0d	0d	100%	IWS		17-Sep-10 A	GF		15-Sep-10	
General								1			
SC10_0020_008	Conceptual Design Input for EIS Target	20d	20d	90%	IWS	01-Sep-10 A	31-Jan-11	GF	03-Sep-10	30-Sep-10	
Remaining Work		Page 1 of :	16			be Packages - TDI Wo	orkplan	1	Date 29-Dec-10	Bi-Weekly Report	: Progress up
Critical Remaining	g Work 🛆 🛆 UDF Baseline MS of Effort UDF Baseline			Baselir	ne:						


			Μ	us	kra	t F	alls	s Pi	roj	ect	- (<u>E-4</u>	44	Re	v. :	2 (F	Put	olic)		
								Li	ayo	ect ut: F	WF	20 P: 20	010	Pag	ge :	39 [°]	of	33:		kage	S
										Т	ASK	filt	er: F	PWP	: Sc	ope	Pac	kage	e Sel	ecto	or.
																Ρ	rint	ed:	29-1	Dec-	10
			20	10											20	11					
N	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D
						• • •															
1						1															
				_		, , ,															
						 	 		 				L								
1										•											
-						-			 												
1						1 1 1															
;						 															
						1 1 1															
-						 			1 1 1												
1						!															
						- 			- - - -												
-						- -			: : :												
						- - 	 		, , ,					- - 		- - 					
1						5															
-						 			1 1 1 1												
						, , , ,			' ' r												
1						1															
1	I					 			, , ,												
	U					1 1 1															
			j			- 			- !												
						, , ,															
1						 															
	Ξ					1															
						- - 								- 							
1																					
			-				- -	h					D C						-		
1		•	PI	REV	101	יאל אר	000	CUI	ME	NTA	TIC	Л	RE	VIE	N C	ON	ИРL	ETI	E		
						 			1 1												
						•	sc	ві	CR	bss	SIN	IG [DEC	ISIO	ЪN						
1						, , ,															
						L			L												
									1												
						 			1 1												
		evisi											hec	ked	Ţ		Ap	opro	ved		
u	o to	Dec	: 24									cwf			+						
								_				_			_	_	_	_	_	_	

tivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	
5610,0020,028		04	04				01 5 am 10 4	<u> </u>	Cluit		JFN
SC10_0020_028	SUPPLY OF INFORMATION TO ENVIRONMENTAL DEPT. FOR EIS	0d	0d	100%	1005		01-Sep-10 A	GF		01-Sep-10	
SC10_0080_009	SUBSCOPES COMPLETE WITH CLOSEOUT AND CONCEPT FINALIZED	0d	0d	0%	IWS		07-Apr-11	GF		26-Oct-10	
SC10_0020_018	SOBI CROSSING ANALYSIS REPORT ISSUED TO SUPPORT MGT. DECISION	0d	0d	0%	IWS		07-Apr-11	GF		08-Dec-10	
Cost											
SC10_0160_020	Cost Components Feed into Estimator	5d	0d	100%	IWS	02-Aug-10 A	31-Aug-10 A	GF	01-Oct-10	07-Oct-10	
SC10_0170_021	Generate Initial Estimate	10d	Od	100%	1\W/S	02-Aug-10 A	27-Aug-10 A	GF	11-Oct-10	22-Oct-10	
3010_0170_021		100	ou	100%	1005	02 Aug 10 A	27 Aug 10 A	G	11 000 10	22 000 10	
SC10_0030_015	COST COMPONENTS RECEIVED	0d	0d	100%	IWS	27-Aug-10 A		GF	01-Oct-10		
SC10_0180_022	INITIAL ESTIMATE COMPLETE	0d	0d	100%	IWS		27-Aug-10 A	GF		10-Dec-10	
SC10_0190_023	Review of Initial Estimate	5d	0d	100%	IWS	24-Nov-10 A	26-Nov-10 A	GF	25-Oct-10	29-Oct-10	
SC10_0200_024	Update Estimate	3d	3d	0%	IWS	14-Mar-11	16-Mar-11	GF	01-Nov-10	03-Nov-10	
SC10_0210_025	ESTIMATE FINALIZED	Od	0d	0%	IWS		16-Mar-11	GF		03-Nov-10	
3010_0210_023		Uu	ou	078	1005		10-10101-11	UI		03-1100-10	
Project Execution	on Schedule			<u> </u>			<u> </u>				
SC10_0210_035	Develop Project Execution Schedule (Cables, Installation, etc.)	20d	0d	100%	IWS	23-Aug-10 A	31-Aug-10 A	GF	23-Aug-10	31-Aug-10	
SC10_0210_045	SCHEDULE DEVELOPED	0d	0d	100%	IWS		31-Aug-10 A	GF		02-Dec-10	
	ion (Workshop)						· · · · ·				
SC10_0210_055	Determination of Appropriate Risk Analysis Method	5d	0d	100%	IWS	22-Nov-10 A	26-Nov-10 A	GF	04-Nov-10	02-Dec-10	
CC10, 0210, 0C5	Did Analysis Consists	E .1			114/6	04 1	10 1 11	~~	02 Day 40	06 Day 40	
SC10_0210_065	Risk Analysis Session	5d	5d	0%	IWS	04-Jan-11*	10-Jan-11	GF	03-Dec-10	06-Dec-10	
SC10_0210_075	Finalization of Risks	5d	5d	0%	IWS	11-Jan-11	17-Jan-11	GF	07-Dec-10	13-Dec-10	
0010_0110_0/0			04					0.		10 200 10	
Complete Feasi	bility Study - Final Report			J		J	J		1		
SC10_0210_085	Generation of Draft Report	12d	12d	80%	IWS	25-Oct-10 A	25-Apr-11	GF	04-Nov-10	02-Dec-10	
											· · · · · · · · · · · · · · · · · · ·
SC10_0210_095	Review of report	5d	5d	0%	IWS	26-Apr-11	02-May-11	GF	03-Dec-10	09-Dec-10	

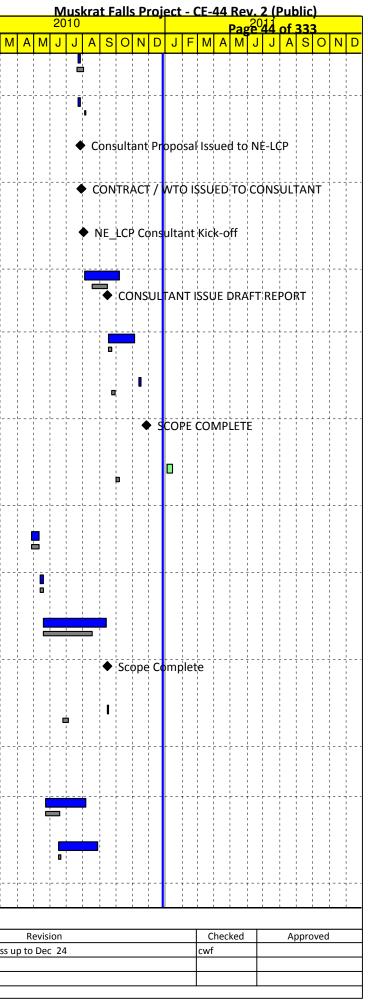

Remaining Work	•	Milestone	% Complete	Page 2 of 16	File: Priority Workscope Packages - TDI Workplan	Date	
-	•		•			29-Dec-10	Bi-Weekly Report Progress up
Critical Remaining Work		UDF Baseline MS			Baseline:		
Remaining Level of Effort		UDF Baseline					
					Data Date: 27-Dec-10		-

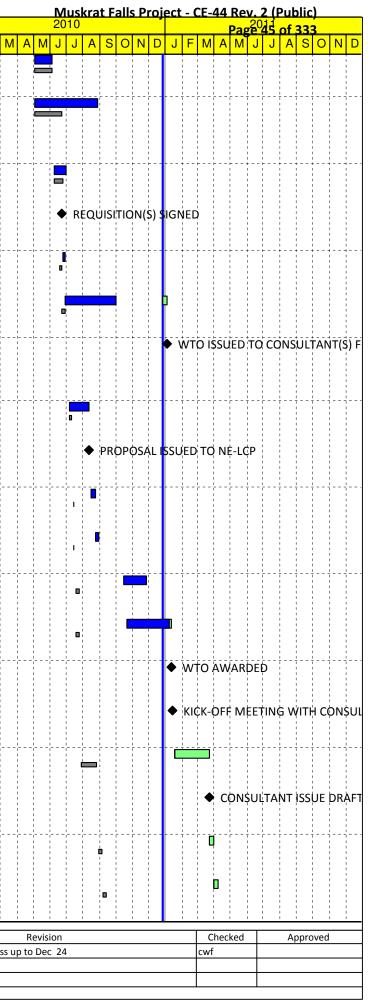
Activi	ity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	J F M
	SC10_0210_105	Report updated	5d	5d	0%	IWS	03-May-11	09-May-11	GF	10-Dec-10		
	SC10_0210_115	REPORT FINALIZED	Od	0d	0%	IWS		09-May-11	GF		16-Dec-10	
	Other				, 	,	'			·		
	SC10_0210_125	Identification of Go Forward scope	15d	15d	0%	IWS	08-Apr-11	28-Apr-11	GF	12-Nov-10	02-Dec-10	
	External Influen	ces										
	Ice (Probabilistie	c Analysis of Iceberg and Subsea Cable Route)										
	SC10_0050_036	Sub-Scope Understood	14d	0d	100%	LC-EN-013	03-May-10 A	17-May-10 A	GF.BB	03-May-10	17-May-10	
	SC10_0250_037	Consultant SOW Developed	12d	Od	100%	LC-EN-013	21-May-10 A	03-Jun-10 A	GF.BB	21-May-10	03-Jun-10	
	SC10_0250_047	Requisition Prepared and Circulated	2d	0d	100%	LC-EN-013	03-Jun-10 A	04-Jun-10 A	GF.BB	03-Jun-10	04-Jun-10	
	SC10_0250_057	REQUISITION SIGNED	0d	0d	100%	LC-EN-013		04-Jun-10 A	GF.BB		04-Jun-10	
	SC10_0250_067	WTO Generated	2d	0d	100%	LC-EN-013	07-Jun-10 A	09-Jun-10 A	GF.BB	07-Jun-10	09-Jun-10	
	SC10_0250_127	Consultant Prep. of Design Proposal incl. CTR's	10d	Od	100%	LC-EN-013	18-Jun-10 A	06-Jul-10 A	GF.BB	18-Jun-10	06-Jul-10	
	SC10_0250_077	WTO ISSUED TO CONSULTANT (REQUIRE PRICING / CTR'S)	Od	Od	100%	LC-EN-013		18-Jun-10 A	GF.BB		18-Jun-10	
	SC10_0250_217	WTO Updated and Signed-Off	5d	0d	100%	LC-EN-013	30-Jun-10 A	07-Jul-10 A	GF.BB	09-Jul-10	15-Jul-10	
	SC10_0250_137	DESIGN PROPOSAL ISSUED TO NE-LCP	Od	0d	100%	LC-EN-013		06-Jul-10 A	GF.BB		06-Jul-10	
	SC10_0250_147	NE-LCP Evaluate Proposal	2d	0d	100%	LC-EN-013	06-Jul-10 A	07-Jul-10 A	GF.BB	07-Jul-10	08-Jul-10	
	SC10_0250_087	WTO AWARDED	Od	0d	100%	LC-EN-013		08-Jul-10 A	GF.BB		15-Jul-10	
	SC10_0250_227	KICK-OFF MEETING WITH CONSULTANT	Od	Od	100%	LC-EN-013	13-Jul-10 A		GF.BB	13-Jul-10		
	SC10_0250_097	Start Scope Execution by C-Core	Od	0d	100%	LC-EN-013	26-Jul-10 A		GF.BB	14-Jul-10		
	Model Developm	ent										
	SC10_0250_277	Bathymetry data file generated for initial Model 'runs'	40d	0d	100%	LC-EN-013	02-Aug-10 A	13-Aug-10 A	GF.BB	02-Aug-10	13-Aug-10	
	SC10_0250_287	Generated water dept profiles along cable route	40d	0d	100%	LC-EN-013	02-Aug-10 A	13-Aug-10 A	GF.BB	02-Aug-10	13-Aug-10	
	Remaining Work		ge 3 of 1	L 6			e Packages - TDI Wo	prkplan	I	Date 29-Dec-10	Bi-Weekly Report	Progress u
	-	Effort UDF Baseline			Baselin Data Da	e: ate: 27-Dec-10						



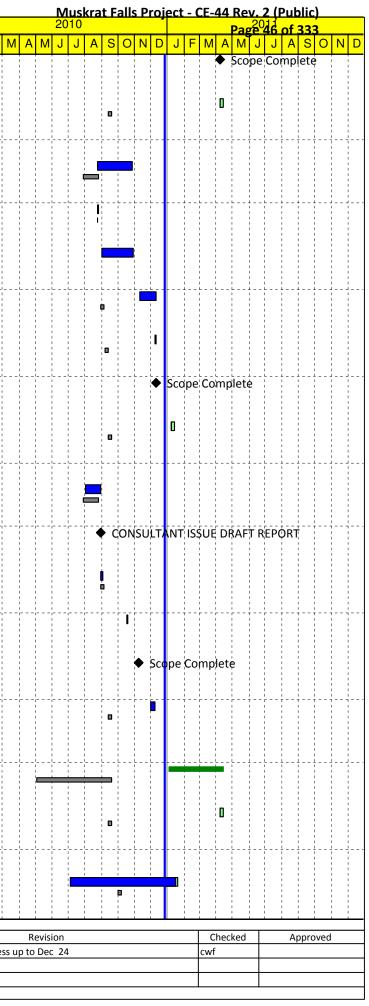
Act	tivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	J F	M
	SC10_0250_297	Draft Report of Model Shell	Od	0d	100%	LC-EN-013		13-Aug-10 A	GF.BB		31-Aug-10		
	SC10_0250_307	Acquire/Evaluate alternate bathymetry data to extend model area (CHS)	5d	0d	100%	LC-EN-013	16-Aug-10 A	16-Sep-10 A	GF.BB	16-Aug-10	20-Aug-10		
	SC10_0250_317	Analyze available iceberg data for use in model	5d	5d	75%	LC-EN-013	16-Aug-10 A	10-Jan-11	GF.BB	17-Aug-10	23-Aug-10		
	SC10_0250_327	Generate/select relationship for iceberg deterioration	5d	5d	75%	LC-EN-013	18-Aug-10 A	17-Jan-11	GF.BB	18-Aug-10	24-Aug-10		
	SC10_0250_337	Begin coding contact model/generate initial run and evaulate output	5d	5d	75%	LC-EN-013	18-Aug-10 A	24-Jan-11	GF.BB	19-Aug-10	25-Aug-10		
	SC10_0250_347	Document contact model components	5d	5d	75%	LC-EN-013	01-Oct-10 A	24-Jan-11	GF.BB	26-Aug-10	01-Sep-10		
	SC10_0250_377	C-Core Model Finalization	5d	5d	0%	LC-EN-013	18-Jan-11	24-Jan-11	GF.BB	26-Aug-10	01-Sep-10		
	SC10_0250_367	Model Submitted to NE-LCP	2d	2d	0%	LC-EN-013	25-Jan-11	26-Jan-11	GF.BB	26-Aug-10	01-Sep-10		
	Scour Analysis												
	SC10_0250_247	(LC-EN-013), Scour Analysis Database Delivery to C-Core (Jacques to Provide SOBI Bathymetry/Scouring D-Base)	40d	7d	90%	LC-EN-013	16-Aug-10 A	12-Jan-11	GF.BB	21-Jul-10	16-Sep-10		
	Cable Risk Asse	ssment											
	SC10_0250_257	C-Core Cable Risk Assessment	40d	2d	75%	LC-EN-013	30-Aug-10 A	14-Jan-11	GF.BB	21-Jul-10	16-Sep-10		
	Reporting			1				1			1		
	SC10_0250_267	C-Core, Reporting (Incl. project Mgt.)	14d	3d	75%	LC-EN-013	11-Oct-10 A	19-Jan-11	GF.BB	21-Jul-10	16-Sep-10		
	SC10_0250_107	SCOPE COMPLETE - Report Submittal for NE_LCP Review	0d	0d	0%	LC-EN-013		19-Jan-11	GF.BB		16-Sep-10		
	SC10_0250_117	Closed-out	5d	5d	0%	LC-EN-013	20-Jan-11	26-Jan-11	GF.BB	17-Sep-10	23-Sep-10		
	Sea Currents			1	1	<u>.</u>	I	1		1	1		
	SC10_0040_031	Sub-Scope Understood	1d	0d	100%		03-May-10 A	21-May-10 A	GF.BB	03-May-10	21-May-10		
	SC10_0150_032	Consultant SOW Developed	10d	0d	100%		21-May-10 A	03-Jun-10 A	GF.BB	21-May-10	03-Jun-10		
	SC10_0230_033	Requisition Prepared and Circulated	40d	0d	100%		03-Jun-10 A	04-Jun-10 A	GF.BB	03-Jun-10	04-Jun-10		
	SC10_0240_034	Requisition Signed	5d	Od	100%		04-Jun-10 A	07-Jun-10 A	GF.BB	04-Jun-10	07-Jun-10		
	SC10_0240_044	WTO Generated	5d	Od	100%		07-Jun-10 A	09-Jun-10 A	GF.BB	07-Jun-10	09-Jun-10		• - •
	Remaining Work Critical Remaining Remaining Level of		ge 4 of 1	16	Baselin	e:	e Packages - TDI Wo	orkplan	J	Date 29-Dec-10 B	Bi-Weekly Report	Progres	sι
					Data Da	ate: 27-Dec-10							

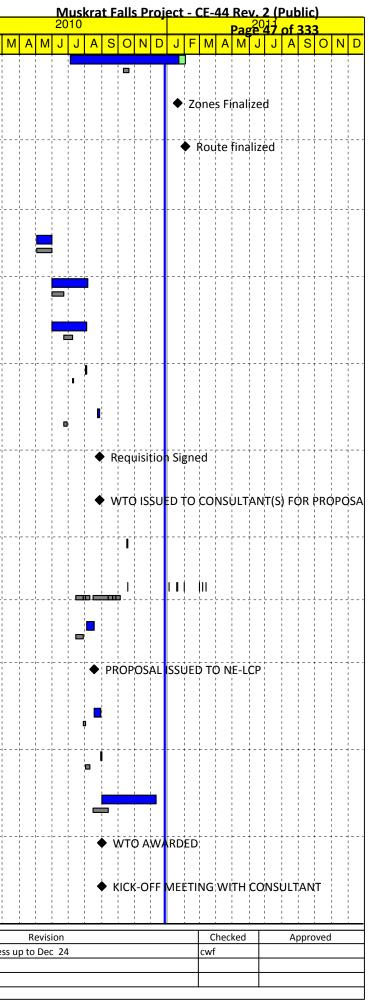
ctivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	J F	N
SC10_0240_054	WTO ISSUED TO CONSULTANT(S) FOR PROPOSAL	Od	0d	100%			11-Jun-10 A	GF.BB		11-Jun-10		
SC10_0250_157	Consultant Prep. of Design Proposal incl. CTR's	10d	0d	100%		14-Jun-10 A	15-Jun-10 A	GF.BB	18-Jun-10	15-Jun-10		
SC10_0250_167	PROPOSAL ISSUED TO NE-LCP	0d	0d	100%			16-Jun-10 A	GF.BB		18-Jun-10		1
SC10_0250_177	NE-LCP Evaluate Proposal	2d	0d	100%		17-Jun-10 A	17-Jun-10 A	GF.BB	17-Jun-10	17-Jun-10		
SC10_0240_144	WTO Updated and Signed-Off	5d	0d	100%		17-Jun-10 A	18-Jun-10 A	GF.BB	17-Jun-10	18-Jun-10		
SC10_0240_064	WTO AWARDED	Od	0d	100%	AM0002	23-Jun-10 A		GF.BB	23-Jun-10			
SC10_0240_104	NE_LCP CONSULTANT KICK-OFF	0d	0d	100%	AM0002	24-Jun-10 A		GF.BB	24-Jun-10			
SC10_0240_074	Consultant External Scope Execution	20d	0d	100%	AM0002	28-Jun-10 A	31-Aug-10 A	GF.BB	28-Jun-10	26-Jul-10		
SC10_0240_124	CONSULTANT ISSUE OF FIRST DRAFT REPORT	0d	0d	100%	AM0002		31-Aug-10 A	GF.BB		26-Jul-10		
SC10_0240_134	NE-LCP Review of Report and Provided Input As needed	5d	0d	100%	AM0002	31-Aug-10 A	07-Dec-10 A	GF.BB	27-Jul-10	02-Aug-10		
SC10_0260_179	Consultant Issue Final Report With Updated Changes	5d	0d	100%	AM0002	08-Dec-10 A	09-Dec-10 A	GF.BB	03-Aug-10	10-Aug-10		
SC10_0240_084	SCOPE COMPLETE	0d	0d	100%	AM0002		10-Dec-10 A	GF.BB		10-Aug-10		
SC10_0240_094	Closed-out	5d	5d	0%	AM0002	04-Jan-11	10-Jan-11	GF.BB	11-Aug-10	17-Aug-10		
Fishing												
SC10_0260_039	Sub-Scope Understood	5d	0d	100%		31-May-10 A	10-Jun-10 A	GF.BB	31-May-10	10-Jun-10		1
SC10_0260_129	Consultant SOW Developed	15d	0d	100%		10-Jun-10 A	15-Jul-10 A	GF.BB	10-Jun-10	13-Jul-10		
SC10_0260_049	Requisition Prepared and Circulated	2d	0d	100%		12-Jul-10 A	16-Jul-10 A	GF.BB	14-Jul-10	14-Jul-10		1
SC10_0260_059	Requisition Signed	0d	0d	100%		19-Jul-10 A		GF.BB	15-Jul-10			
SC10_0260_089	WTO Generated	4d	0d	100%		19-Jul-10 A	22-Jul-10 A	GF.BB	15-Jul-10			I
SC10_0260_139	WTO Issued to Consultant for PROPOSAL	Od	0d	100%		22-Jul-10 A		GF.BB	15-Jul-10			
							<u> </u>					-

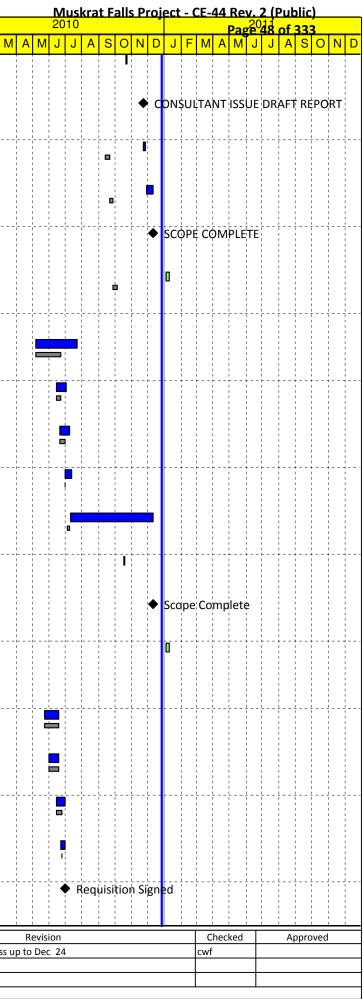

Remaining Work	٠	Milestone	% Complete	Page 5 of 16	File: Priority Workscope Packages - TDI Workplan	Date	
5			·			29-Dec-10	Bi-Weekly Report Progress up
Critical Remaining Work		UDF Baseline MS			Baseline:		
Remaining Level of Effort		UDF Baseline					
					Data Date: 27-Dec-10		

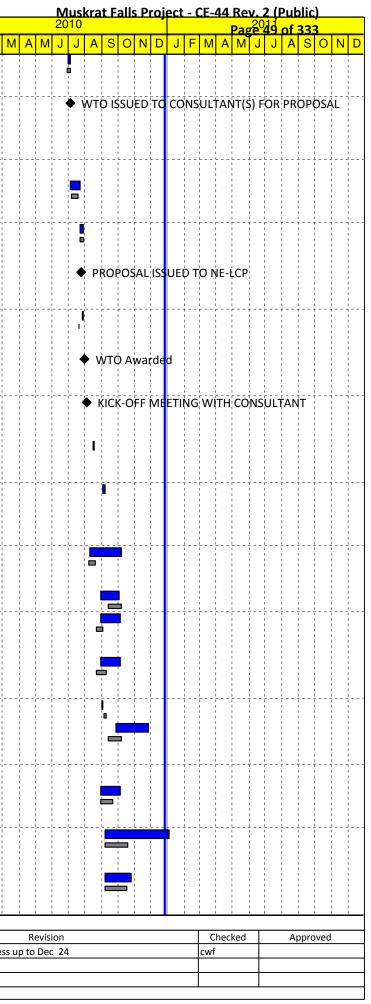

ctivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	JFN
SC10_0250_187	Consultant Prep. of Design Proposal incl. CTR's	10d	0d	100%		23-Jul-10 A	27-Jul-10 A	GF.BB	21-Jul-10	03-Aug-10	
SC10_0250_207	NE-LCP Evaluate Proposal	2d	0d	100%		23-Jul-10 A	26-Jul-10 A	GF.BB	05-Aug-10) 06-Aug-10	
SC10_0250_197	Consultant Proposal Issued to NE-LCP	Od	0d	100%			27-Jul-10 A	GF.BB		03-Aug-10	
SC10_0260_079	CONTRACT / WTO ISSUED TO CONSULTANT	Od	0d	100%	LC-EN-019	30-Jul-10 A		GF.BB	21-Jul-10		
SC10_0240_114	NE_LCP Consultant Kick-off	Od	0d	100%	LC-EN-019	02-Aug-10 A		GF.BB	17-Aug-10	,	
SC10_0260_099	External Scope Execution	15d	0d	100%	LC-EN-019	04-Aug-10 A	08-Oct-10 A	GF.BB	19-Aug-10) 16-Sep-10	·
SC10_0260_149	CONSULTANT ISSUE DRAFT REPORT	Od	0d	100%	LC-EN-019		16-Sep-10 A	GF.BB		16-Sep-10	
SC10_0260_159	NE-LCP Review of Report and Provide Input As needed	5d	0d	100%	LC-EN-019	17-Sep-10 A	05-Nov-10 A	GF.BB	17-Sep-10	23-Sep-10	
SC10_0260_169	Consultant Issue Final Report With Updated Changes	5d	0d	100%	LC-EN-019	12-Nov-10 A	16-Nov-10 A	GF.BB	24-Sep-10	30-Sep-10	
SC10_0260_109	SCOPE COMPLETE	Od	0d	100%	LC-EN-019		26-Nov-10 A	GF.BB		30-Sep-10	
SC10_0260_119	Closed-out	9d	9d	0%	LC-EN-019	04-Jan-11	14-Jan-11	GF.BB	01-Oct-10	07-Oct-10	
Vessel Traffic Ris	sk										
SC10_0270_041	Sub-Scope Understood	10d	0d	100%		28-Apr-10 A	12-May-10 A	GF	28-Apr-10	12-May-10	
SC10_0290_042	Gathering of External Information	4d	0d	100%		13-May-10 A	19-May-10 A	GF	13-May-10) 19-May-10	
SC10_0290_052	Analysis performed	5d	0d	100%		20-May-10 A	14-Sep-10 A	GF	20-May-10) 19-Aug-10	
SC10_0290_062	Scope Complete	Od	0d	100%			15-Sep-10 A	GF		24-Jun-10	
SC10_0290_072	Closed-out	5d	0d	100%		16-Sep-10 A	17-Sep-10 A	GF	25-Jun-10	06-Jul-10	
Transmission De	efinition / Cables										
Transmission De	finition										
SC10_0290_082	Identify transmission requirements	15d	0d	100%		24-May-10 A	06-Aug-10 A	GF.TR	24-May-10) 18-Jun-10	
SC10_0290_112	Capture and updated LCP Design Basis Reflect	1d	0d	100%		16-Jun-10 A	27-Aug-10 A	GF.TR	16-Jun-10	21-Jun-10	
Technology Revi	iew	1				1		1			
		Page 6 of 1	_	I=•• ~ -		e Packages - TDI Wo			Date		

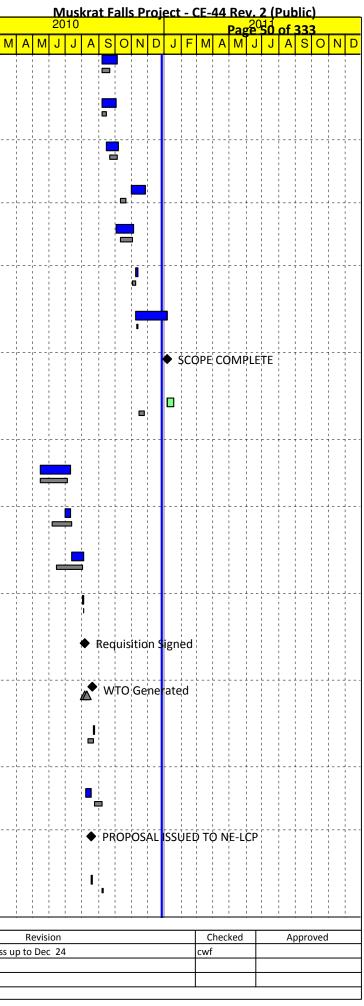
Data Date: 27-Dec-10


Remaining Level of Effort UDF Baseline

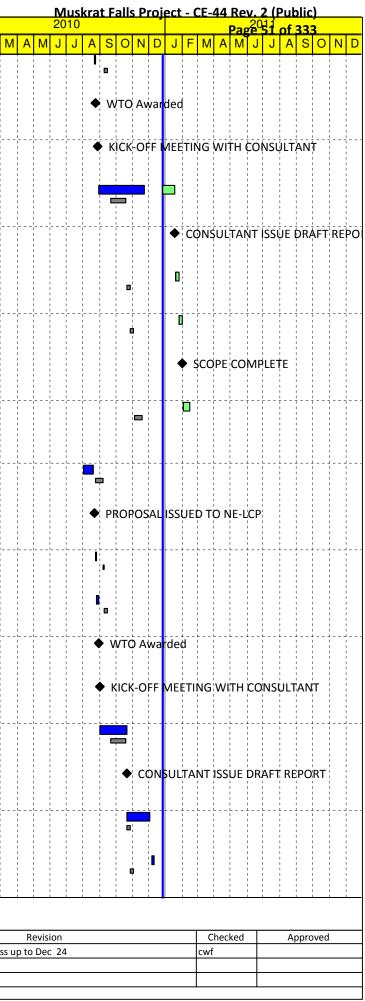

A	ctivity ID	Activity Name	OD	RD	Performance % Complete		Start	Finish	PE	UDF BL Start	UDF BL Finish	JFM
	SC10_0290_092	Identify Suppliers and capture information	14d	Od	1009	6	03-May-10 A	04-Jun-10 A	GF.TR	03-May-10	04-Jun-10	
	SC10_0290_132	Identify relevant world projects and capture information	20d	0d	1009	6	03-May-10 A	27-Aug-10 A	GF.TR	03-May-10	22-Jun-10	
	Vendor Cable In	formation / Preliminary Design					1	1	1			
	SC10_0290_102	Prepare a technical query document for cable manufacturers - Develop SOW	8d	Od	1009	6	09-Jun-10 A	30-Jun-10 A	GF.TR	09-Jun-10	25-Jun-10	
	SC10_0290_152	REQUISITION(S) SIGNED	Od	Od	1009	6	23-Jun-10 A		GF.TR	23-Jun-10		
	SC10_0290_142	Requisition(s) Prepared and Circulated	3d	Od	1009	6	24-Jun-10 A	28-Jun-10 A	GF.TR	18-Jun-10	22-Jun-10	·
	SC10_0290_162	WTO'S GENERATED	4d	Od	50%	6	28-Jun-10 A	04-Jan-11	GF.TR	23-Jun-10	29-Jun-10	
	SC10_0290_172	WTO ISSUED TO CONSULTANT(S) FOR PROPOSAL	Od	Od	09	6	04-Jan-11		GF.TR	30-Jun-10		
	ABB											
	SC10_0290_192	Consultant Development of Proposal With CTR's	10d	0d	1009	6	07-Jul-10 A	12-Aug-10 A	GF.TR	07-Jul-10	12-Jul-10	
	SC10_0290_372	PROPOSAL ISSUED TO NE-LCP	0d	Od	1009	6	13-Aug-10 A		GF.TR	16-Jul-10		
	SC10_0290_382	Proposal Evaluated By NE-LCP	2d	0d	1009	6	17-Aug-10 A	25-Aug-10 A	GF.TR	16-Jul-10	16-Jul-10	
	SC10_0290_632	NE-LCP Meetings with ABB	2d	Od	1009	6	25-Aug-10 A	31-Aug-10 A	GF.TR	16-Jul-10	16-Jul-10	
	SC10_0290_422	WTO Legal Review process / Contract negotiations with ABB	5d	Od	1009	6	15-Oct-10 A	26-Nov-10 A	GF.TR	20-Jul-10	26-Jul-10	
	SC10_0290_392	WTO Updated and Signed-Off	5d	6d	959	6	22-Oct-10 A	11-Jan-11	GF.TR	20-Jul-10	26-Jul-10	
	SC10_0290_402	WTO AWARDED	0d	Od	09	6	12-Jan-11		GF.TR	27-Jul-10		
	SC10_0290_412	KICK-OFF MEETING WITH CONSULTANT	0d	Od	09	6	13-Jan-11		GF.TR	28-Jul-10		
	SC10_0290_232	External Scope Execution	20d	48d	09	6	17-Jan-11	23-Mar-11	GF.TR	30-Jul-10	27-Aug-10	·
	SC10_0260_219	CONSULTANT ISSUE DRAFT REPORT	0d	Od	09	6		23-Mar-11	GF.TR		27-Aug-10	
	SC10_0260_229	NE-LCP Review of Report and Provide Input As needed	5d	5d	09	6	24-Mar-11	30-Mar-11	GF.TR	30-Aug-10	06-Sep-10	
	SC10_0260_239	Consultant Issue Final Report With Updated Changes	5d	5d	09	6	31-Mar-11	07-Apr-11	GF.TR	07-Sep-10	13-Sep-10	
	ļ.				In:Let 1		be Packages - TDI Wo	orkolon		Date	<u> </u>	1 1
	Remaining Work		ge 7 of 1	10			e rachages - IDI WO	אראומוו			i-Weekly Report	Progress u
	Critical Remaining Remaining Level of	Work L UDF Baseline MS			Basel							
					Data	Date: 27-Dec-10				l		


Act	tivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	J F M
	SC10_0290_242	Scope Complete	Od	0d	0%			07-Apr-11	GF.TR		13-Sep-10	
	SC10_0290_282	Closed-out	5d	5d	0%		08-Apr-11	14-Apr-11	GF.TR	14-Sep-10	20-Sep-10	
	Nexans											·
	SC10_0290_212	External Scope Execution	20d	0d	100%		24-Aug-10 A	28-Oct-10 A	GF.TR	30-Jul-10	27-Aug-10	
	SC10_0290_342	NE-LCP Meetings with Nexan	2d	0d	100%		24-Aug-10 A	26-Aug-10 A	GF.TR	24-Aug-10	25-Aug-10	
	SC10_0260_189	CONSULTANT ISSUE DRAFT REPORT	2d	0d	100%		01-Sep-10 A	30-Oct-10 A	GF.TR		27-Aug-10	
	SC10_0260_199	NE-LCP Review of Report and Provide Input As needed	5d	0d	100%		10-Nov-10 A	10-Dec-10 A	GF.TR	30-Aug-10	06-Sep-10	
	SC10_0260_209	Consultant Issue Final Report With Updated Changes	10d	0d	100%		08-Dec-10 A	10-Dec-10 A	GF.TR	07-Sep-10	13-Sep-10	
	SC10_0290_222	Scope Complete	Od	0d	100%			10-Dec-10 A	GF.TR		13-Sep-10	
	SC10_0290_292	Closed-out	5d	5d	0%		07-Jan-11	13-Jan-11	GF.TR	14-Sep-10	20-Sep-10	
	Prysmian											·ll
	SC10_0290_252	External Scope Execution (Not under NE-LCP Contract)	20d	0d	100%		02-Aug-10 A	31-Aug-10 A	GF.TR	30-Jul-10	27-Aug-10	
	SC10_0260_249	CONSULTANT ISSUE DRAFT REPORT	Od	0d	100%			31-Aug-10 A	GF.TR		27-Aug-10	
	SC10_0260_259	NE-LCP Review of Report and Provide Input As needed	5d	0d	100%		31-Aug-10 A	03-Sep-10 A	GF.TR	30-Aug-10	06-Sep-10	
	SC10_0290_352	SOBI Team Meeting with Prysmian	Od	0d	100%		18-Oct-10 A	19-Oct-10 A	GF.TR		13-Sep-10	
	SC10_0290_262	Scope Complete	Od	0d	100%			09-Nov-10 A	GF.TR		13-Sep-10	
	SC10_0290_272	Closed-out	5d	0d	100%		01-Dec-10 A	08-Dec-10 A	GF.TR	14-Sep-10	20-Sep-10	·
	Study Outcome											
	SC10_0290_312	Cable Recommendation Summary	25d	72d	50%		03-May-10 A	14-Apr-11	GF.TR	03-May-10	20-Sep-10	
	SC10_0290_302	Review of External works and analysis	5d	5d	0%		08-Apr-11	14-Apr-11	GF.TR	14-Sep-10	20-Sep-10	
	Conceptual Des	ign Routing										
		Determine Zone Boundaries	5d	0d	98%		05-Jul-10 A	20-Jan-11	GF	01-Oct-10	07-Oct-10	
		; 1	D	<u> </u>	Files Dei	ority Morkess	e Packages - TDI Wo	vrknlan		Date		
	Remaining Work		Page 8 of 1	U	Baselin		n i acrages - IDI WU	νικριατι			3i-Weekly Report	Progress u
	Remaining Level of	Effort UDF Baseline			Data Da	ate: 27-Dec-10						

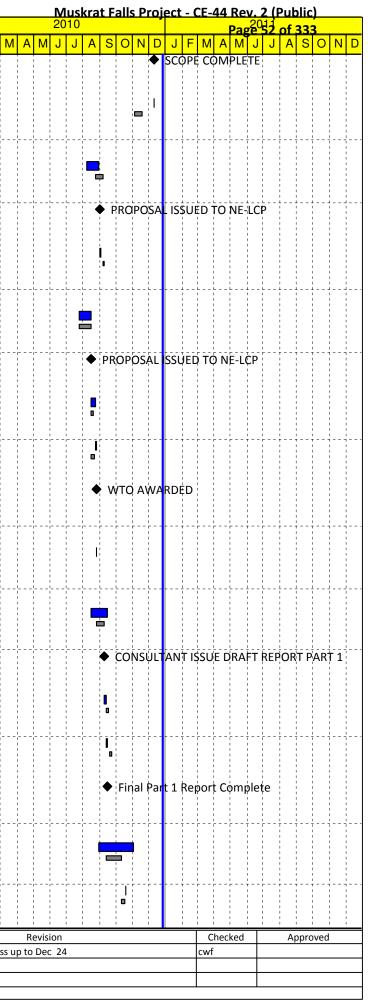

ctivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	JFM
SC10_0060_099	Route selection in each Zone as based on other sub-scopes	10d	10d	95%		05-Jul-10 A	02-Feb-11	GF	11-Oct-10	22-Oct-10	
SC10_0060_089	Zones Finalized	Od	0d	0%			20-Jan-11	GF		07-Oct-10	
SC10_0060_109	Route finalized	Od	0d	0%			02-Feb-11	GF		22-Oct-10	
Protection				I			Į		Į		
Rock Placement	(Berm)									_	
SC10_0410_058	Investgation of Global Rock Placement contractors	25d	0d	100%	LC-EN-018	03-May-10 A	31-May-10 A	GF.BB	03-May-10	31-May-10	
SC10_0420_059	Select Contractors to engage	5d	0d	100%	LC-EN-018	31-May-10 A	06-Aug-10 A	GF.BB	31-May-10	22-Jun-10	
SC10_0410_068	Prepare SOW Developed and Issued For External Scope	10d	Od	100%	LC-EN-018	01-Jun-10 A	04-Aug-10 A	GF.BB	22-Jun-10	09-Jul-10	
SC10_0410_078	Requisition Prepared	2d	0d	100%	LC-EN-018	03-Aug-10 A	05-Aug-10 A	GF.BB	09-Jul-10	12-Jul-10	
SC10_0290_322	WTO'S GENERATED	4d	0d	100%	LC-EN-018	24-Aug-10 A	27-Aug-10 A	GF.BB	23-Jun-10	29-Jun-10	
SC10_0410_108	Requisition Signed	Od	0d	100%	LC-EN-018		27-Aug-10 A	GF.BB		12-Jul-10	
SC10_0290_332	WTO ISSUED TO CONSULTANT(S) FOR PROPOSAL	Od	0d	100%	LC-EN-018	27-Aug-10 A		GF.BB	30-Jun-10		
SC10_0290_362	SOBI Team Meeting with Rock Berm Consultant	Od	Od	100%		18-Oct-10 A	19-Oct-10 A	GF.TR		13-Sep-10	
· · · · · ·	OPE WILL NOT BE EXECUTED)										
Tideway SC10_0290_472	Consultant Development of Proposal With CTR's	10d	Od	100%	LC-EN-018	04-Aug-10 A	18-Aug-10 A	GF.BB	16-Jul-10	30-Jul-10	
SC10_0290_482	PROPOSAL ISSUED TO NE-LCP	Od	Od	100%	LC-EN-018	18-Aug-10 A		GF.BB	30-Jul-10		
SC10_0290_492	Proposal Evaluated By NE-LCP	2d	0d	100%	LC-EN-018	18-Aug-10 A	30-Aug-10 A	GF.BB	30-Jul-10	03-Aug-10	
SC10_0290_502	WTO Updated and Signed-Off	5d	0d	100%	LC-EN-018	31-Aug-10 A	01-Sep-10 A	GF.BB	03-Aug-10	11-Aug-10	
SC10_0410_138	External Scope Execution	20d	0d	100%	LC-EN-018	01-Sep-10 A	10-Dec-10 A	GF.BB	16-Aug-10	14-Sep-10	
SC10_0290_512	WTO AWARDED	Od	0d	100%	LC-EN-018	01-Sep-10 A		GF.BB	11-Aug-10	_	
SC10_0290_522	KICK-OFF MEETING WITH CONSULTANT	Od	Od	100%	LC-EN-018	01-Sep-10 A		GF.BB	12-Aug-10		
Remaining Work Critical Remaining	Milestone % Complete Work UDF Baseline MS	Page 9 of 1	.6	File: Pr Baselin		e Packages - TDI Wo	prkplan	<u> </u>	Date 29-Dec-10	Bi-Weekly Report	Progress
-	Effort UDF Baseline				e. ate: 27-Dec-10						


Act	tivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	JFM
	SC10_0290_442	SOBI Team Meeting with Tideway	Od	Od	100%		21-Oct-10 A	22-Oct-10 A	GF.TR		13-Sep-10	
	SC10_0260_279	CONSULTANT ISSUE DRAFT REPORT	0d	Od	100%	LC-EN-018		22-Nov-10 A	GF.BB		14-Sep-10	
	SC10_0260_289	NE-LCP Review of Report and Provide Input As needed	5d	Od	100%	LC-EN-018	22-Nov-10 A	26-Nov-10 A	GF.BB	14-Sep-10	21-Sep-10	
	SC10_0260_299	Consultant Issue Final Report With Updated Changes	5d	Od	100%	LC-EN-018	29-Nov-10 A	10-Dec-10 A	GF.BB	21-Sep-10	28-Sep-10	
	SC10_0410_148	SCOPE COMPLETE	Od	Od	100%	LC-EN-018		10-Dec-10 A	GF.BB		28-Sep-10	·
	SC10_0410_158	Closed-out	5d	5d	0%	LC-EN-018	04-Jan-11	10-Jan-11	GF.BB	28-Sep-10	05-Oct-10	
	Rock Trenching				<u> </u>	1			1			
	SC10_0320_050	Investgation of Global trenching contractors	25d	Od	100%		07-May-10 A	23-Jul-10 A	GF.TR	07-May-10) 22-Jun-10	
	SC10_0320_060	Select Contractors to engage	5d	Od	100%		15-Jun-10 A	02-Jul-10 A	GF.TR	15-Jun-10	23-Jun-10	
	SC10_0330_051	Prepare SOW and Issue for external works.	5d	Od	100%		21-Jun-10 A	09-Jul-10 A	GF.TR	21-Jun-10	30-Jun-10	
	SC10_0340_052	Execution of Rock Trenching Capability Study	1d	Od	100%		01-Jul-10 A	13-Jul-10 A	GF.TR	02-Jul-10	02-Jul-10	
	SC10_0350_063	Developed Capability Statement for Rock Trenching	4d	Od	100%		12-Jul-10 A	10-Dec-10 A	GF.TR	06-Jul-10	09-Jul-10	
	SC10_0290_452	SOBI Team Meeting with Rock Trenching Specilist	Od	Od	100%		18-Oct-10 A	19-Oct-10 A	GF.TR		13-Sep-10	
	SC10_0350_073	Scope Complete	Od	Od	100%			10-Dec-10 A	GF.TR		09-Jul-10	
	SC10_0350_053	Closeout Study	5d	5d	0%		04-Jan-11	10-Jan-11	GF.TR	06-Jul-10		
	Horizontal Direc	ctional Drilling			<u> </u>	1			1			
	SC10_0370_086	Investgation of Global HDD contractors	20d	Od	100%	LC-EN-017	24-May-10 A	18-Jun-10 A	GF.BB	24-May-10) 18-Jun-10	
	SC10_0370_096	Select Contractors to engage	5d	Od	100%	LC-EN-017	01-Jun-10 A	18-Jun-10 A	GF.BB	01-Jun-10	18-Jun-10	
	SC10_0370_106	Prepare SOW for external works.	10d	Od	100%	LC-EN-017	14-Jun-10 A	30-Jun-10 A	GF.BB	14-Jun-10	24-Jun-10	
	SC10_0370_116	Requisition Prepared	1d	Od	100%	LC-EN-017	22-Jun-10 A	30-Jun-10 A	GF.BB	25-Jun-10	25-Jun-10	
	SC10_0370_126	Requisition Signed	Od	Od	100%	LC-EN-017	30-Jun-10 A		GF.BB	29-Jun-10		
	Remaining Work	♦ ♦ Milestone	age 10 of	16	File: Pri	iority Workscop	e Packages - TDI Wo	orkplan		Date		
	Critical Remaining				Baselin					29-Dec-10	Bi-Weekly Report	Progress u
		f Effort UDF Baseline										
					Data Da	ate: 27-Dec-10						

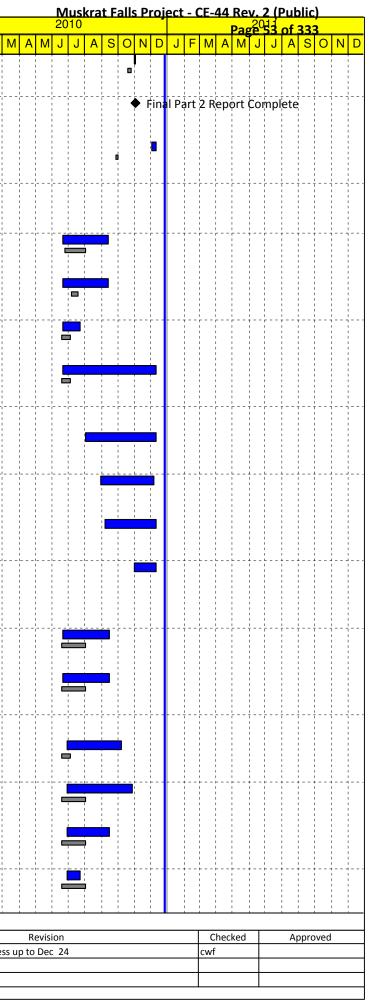
Activity ID Activity Name		Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	JI	F M
	SC10_0370_136	WTOs Generated	4d	Od	100%	LC-EN-017	30-Jun-10 A	05-Jul-10 A	GF.BB	29-Jun-10	06-Jul-10		
	SC10_0370_146	WTO ISSUED TO CONSULTANT(S) FOR PROPOSAL	Od	Od	100%	LC-EN-017	05-Jul-10 A		GF.BB	07-Jul-10			
	Hatch Mott (ENG	. Deliverables)											
	Scope Preparati		<u></u>		- <u></u>				<u> </u>				!
	SC10_0390_113	Consultant Development of Proposal With CTR's	10d	Od	100%	LC-EN-017	05-Jul-10 A	23-Jul-10 A	GF.BB	07-Jul-10	20-Jul-10		
	SC10_0290_752	WTO Updated and Signed-Off	5d	0d	100%	LC-EN-017	23-Jul-10 A	29-Jul-10 A	GF.BB	23-Jul-10	29-Jul-10		
	SC10_0290_732	PROPOSAL ISSUED TO NE-LCP	Od	0d	100%	LC-EN-017	26-Jul-10 A		GF.BB	21-Jul-10			
	SC10_0290_742	Proposal Evaluated By NE-LCP	2d	Od	100%	LC-EN-017	27-Jul-10 A	30-Jul-10 A	GF.BB	21-Jul-10	22-Jul-10		
	SC10_0440_114	WTO Awarded	Od	Od	100%	LC-EN-017	30-Jul-10 A		GF.BB	30-Jul-10			
	SC10_0290_762	KICK-OFF MEETING WITH CONSULTANT	Od	Od	100%	LC-EN-017	05-Aug-10 A		GF.BB	02-Aug-10			
	SC10_0290_892	NE-LCP Meeting at Hatch-Mott MacDonald Office	2d	Od	100%	LC-EN-017	17-Aug-10 A	19-Aug-10 A	GF.BB	02-Aug-10)		
	SC10_0290_902	SOBI Site Meeting (NE-LCP / Hatch-Mott)	3d	Od	100%	LC-EN-017	03-Sep-10 A	06-Sep-10 A	GF.BB	02-Aug-10			
	Part 1 (Data Rev	view and Feas. Design											
		Review Exisitng Geotechnical info review	10d	Od	100%	LC-EN-017	10-Aug-10 A	08-Oct-10 A	GF.BB	09-Aug-10	20-Aug-10		¹
	SC10_0370_266	HDD Bore Profiles Development and Conceptual Design	20d	0d	100%	LC-EN-017	30-Aug-10 A	04-Oct-10 A	GF.BB	13-Sep-10	08-Oct-10		
	SC10_0370_216	HDD Industry assessment	10d	Od	100%	LC-EN-017	31-Aug-10 A	05-Oct-10 A	GF.BB	23-Aug-10	0 03-Sep-10		
	SC10_0370_286	HDD Assessment of Shoreline Design and Construction challenges	15d	Od	100%	LC-EN-017	31-Aug-10 A	05-Oct-10 A	GF.BB	23-Aug-10	0 10-Sep-10		
	SC10_0370_226	Site Visit	5d	0d	100%	LC-EN-017	01-Sep-10 A	03-Sep-10 A	GF.BB	06-Sep-10	10-Sep-10	·¦	
	SC10_0370_276		20d	Od	100%	LC-EN-017	28-Sep-10 A	26-Nov-10 A	GF.BB	13-Sep-10	08-Oct-10		
	Part 2 (Cost Est	imate / Schedule)											
		Develop Risk Mitigation Measure	15d	0d	100%	LC-EN-017	31-Aug-10 A	05-Oct-10 A	GF.BB	31-Aug-10	22-Sep-10		
	SC10_0370_376	Develop Construction Schedule (Level 2)	15d	Od	98%	LC-EN-017	07-Sep-10 A	04-Jan-11	GF.BB	07-Sep-10	20-Oct-10		¹
	SC10_0370_446	Develop Cost Estimate (AACEI Class 3)	15d	0d	100%	LC-EN-017	07-Sep-10 A	26-Oct-10 A	GF.BB	07-Sep-10	18-Oct-10		
		!										<u> </u>	
Remaining Work ♦ Milestone Milestone Page 1 Critical Remaining Work ▲ UDF Baseline MS ▲ UDF Baseline MS ▲ UDF Baseline MS				16	File: Pri Baselin		e Packages - TDI Wo	orkplan		Date 29-Dec-10	Bi-Weekly Report	Prog	ress u
	-	Effort UDF Baseline				ate: 27-Dec-10							
<u> </u>													



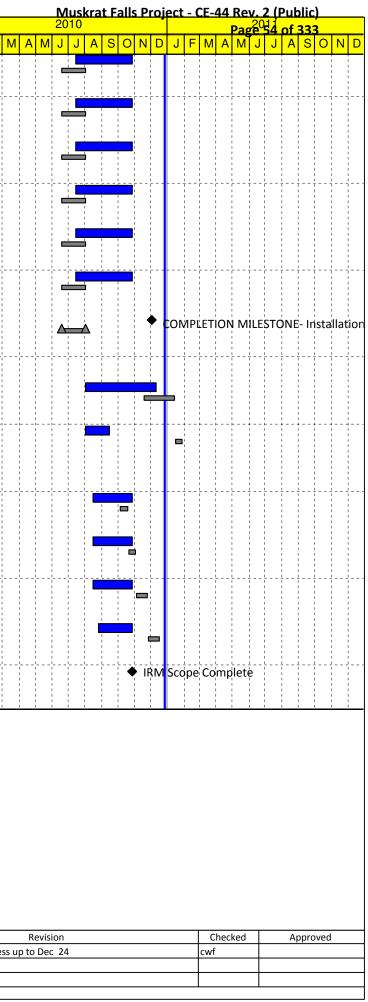
Ac	tivity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	J F	M
Ī	SC10_0370_296	Develop Risk Registry	10d	Od	100%	LC-EN-017	08-Sep-10 A	05-Oct-10 A	GF.BB	08-Sep-10	22-Sep-10		
	SC10_0370_586	Develop Basis of Estimate	10d	Od	100%	LC-EN-017	08-Sep-10 A	04-Oct-10 A	GF.BB	08-Sep-10	16-Sep-10		
	SC10_0370_496	Develop Risk Review Presentation	15d	Od	100%	LC-EN-017	15-Sep-10 A	08-Oct-10 A	GF.BB	22-Sep-10	06-Oct-10	·	
	SC10_0370_636	Monte-Carlo Analysis	10d	0d	100%	LC-EN-017	01-Nov-10 A	26-Nov-10 A	GF.BB	11-Oct-10	22-Oct-10		
	Reporting SC10_0260_399	Consultant Prep. of Draft Report for Issue to NE-LCP	14d	Od	100%	LC-EN-017	04-Oct-10 A	05-Nov-10 A	GF.BB	11-Oct-10	03-Nov-10		
	SC10_0260_409	NE-LCP Review of Report and Provide Input As needed	5d	Od	100%	LC-EN-017	08-Nov-10 A	12-Nov-10 A	GF.BB	03-Nov-10	09-Nov-10		
	SC10_0260_419	Consultant Issue Final Report With Updated Changes	2d	2d	99.5%	LC-EN-017	09-Nov-10 A	05-Jan-11	GF.BB	10-Nov-10	12-Nov-10		
	SC10_0370_186	SCOPE COMPLETE	0d	Od	0%	LC-EN-017		05-Jan-11	GF.BB		30-Sep-10		
	SC10_0370_196	Closed-out.	9d	9d	0%	LC-EN-017	06-Jan-11	18-Jan-11	GF.BB	15-Nov-10	25-Nov-10		
	Shore Approach	es (Burying/Excavating/Cable Instal. Techniques)		<u> </u>						1			
	SC10_0370_306	Identification of Traditional Shore Approach Methods	10d	0d	100%	LC-EN-021	15-May-10 A	12-Jul-10 A	GF.BM	15-May-10	06-Jul-10		
	SC10_0370_316	Identification of traditional Shore approach Global Contractors	5d	0d	100%	LC-EN-021	30-Jun-10 A	12-Jul-10 A	GF.BM	07-Jun-10	13-Jul-10		
	SC10_0370_326	Consultant SOW Developed	15d	0d	100%	LC-EN-021	14-Jul-10 A	04-Aug-10 A	GF.BM	14-Jun-10	03-Aug-10		
	SC10_0370_336	Requisition Prepared	1d	Od	100%	LC-EN-021	02-Aug-10 A	05-Aug-10 A	GF.BM	05-Aug-10	05-Aug-10		
	SC10_0370_346	Requisition Signed	0d	Od	100%	LC-EN-021	06-Aug-10 A		GF.BM				
	SC10_0370_356	WTO Generated	Od	Od	100%	LC-EN-021	20-Aug-10 A		GF.BM	06-Aug-10	11-Aug-10		
	SC10_0370_366	WTO Issued To Consultant(s) For Proposal	4d	0d	100%	LC-EN-021	23-Aug-10 A	24-Aug-10 A	GF.BM	12-Aug-10	23-Aug-10		
	Tideway												
	SC10_0390_123	Consultant Development of Proposal With CTR's	10d	0d	100%	LC-EN-021	09-Aug-10 A	19-Aug-10 A	GF.BM	24-Aug-10	07-Sep-10		
	SC10_0290_772	PROPOSAL ISSUED TO NE-LCP	0d	0d	100%	LC-EN-021	18-Aug-10 A		GF.BM				
	SC10_0290_782	Proposal Evaluated By NE-LCP	2d	0d	100%	LC-EN-021	19-Aug-10 A	20-Aug-10 A	GF.BM	08-Sep-10	09-Sep-10		
	Remaining Work Critical Remaining V Remaining Level of		ge 12 of	16	Baselin		e Packages - TDI Wo	prkplan		Date 29-Dec-10 B	3i-Weekly Report	Progro	ess u



Activity ID	Activity Name	OD	RD	Performance % Complete	LC_WTO	Start	Finish	PE	UDF BL Start	UDF BL Finish	JFN
SC10_0290_792	WTO Updated and Signed-Off	5d	0d	100%	LC-EN-021	23-Aug-10 A	24-Aug-10 A	GF.BM	10-Sep-10	16-Sep-10	
SC10_0440_124	WTO Awarded	Od	0d	100%	LC-EN-021	24-Aug-10 A		GF.BM			
SC10_0290_802	KICK-OFF MEETING WITH CONSULTANT	0d	0d	100%	LC-EN-021	27-Aug-10 A		GF.BM			
SC10_0370_386	External Scope Execution	20d	11d	60%	LC-EN-021	30-Aug-10 A	18-Jan-11	GF.BM	22-Sep-10	20-Oct-10	-
SC10_0260_489	CONSULTANT ISSUE DRAFT REPORT	Od	0d	0%	LC-EN-021		18-Jan-11	GF.BM			
SC10_0260_499	NE-LCP Review of Report and Provide Input As needed	5d	5d	0%	LC-EN-021	19-Jan-11	25-Jan-11	GF.BM	21-Oct-10	27-Oct-10	
SC10_0260_509	Consultant Issue Final Report With Updated Changes	5d	5d	0%	LC-EN-021	26-Jan-11	01-Feb-11	GF.BM	28-Oct-10	03-Nov-10	
SC10_0370_396	SCOPE COMPLETE	Od	0d	0%	LC-EN-021		01-Feb-11	GF.BM			
SC10_0370_406	Closed-out	10d	10d	0%	LC-EN-021	02-Feb-11	15-Feb-11	GF.BM	04-Nov-10	18-Nov-10	
Boskalis											
SC10_0390_133	Consultant Development of Proposal With CTR's	10d	0d	100%	LC-EN-022	02-Aug-10 A	20-Aug-10 A	GF.BM	24-Aug-10	07-Sep-10	
SC10_0290_812	PROPOSAL ISSUED TO NE-LCP	0d	0d	100%	LC-EN-022	23-Aug-10 A		GF.BM			
SC10_0290_822	Proposal Evaluated By NE-LCP	2d	0d	100%	LC-EN-022	24-Aug-10 A	26-Aug-10 A	GF.BM	08-Sep-10	09-Sep-10	
SC10_0290_832	WTO Updated and Signed-Off	5d	0d	100%	LC-EN-022	27-Aug-10 A	31-Aug-10 A	GF.BM	10-Sep-10	16-Sep-10	
SC10_0440_134	WTO Awarded	Od	0d	100%	LC-EN-022	31-Aug-10 A		GF.BM			
SC10_0290_842	KICK-OFF MEETING WITH CONSULTANT	Od	0d	100%	LC-EN-022	01-Sep-10 A		GF.BM			
SC10_0370_456	External Scope Execution	20d	0d	100%	LC-EN-022	02-Sep-10 A	21-Oct-10 A	GF.BM	22-Sep-10	20-Oct-10	
SC10_0260_519	CONSULTANT ISSUE DRAFT REPORT	Od	0d	100%	LC-EN-022		22-Oct-10 A	GF.BM			
SC10_0260_529	NE-LCP Review of Report and Provide Input As needed	5d	0d	100%	LC-EN-022	22-Oct-10 A	03-Dec-10 A	GF.BM	21-Oct-10	27-Oct-10	
SC10_0260_539	Consultant Issue Final Report With Updated Changes	5d	0d	100%	LC-EN-022	06-Dec-10 A	10-Dec-10 A		28-Oct-10	03-Nov-10	


Remaining Work	•	♦ Milestone	% Complete	Page 13 of 16	File: Priority Workscope Packages - TDI Workplan	Date	
5	•		·			29-Dec-10	Bi-Weekly Report Progress up
Critical Remaining Work		UDF Baseline MS	5		Baseline:		
Remaining Level of Effort		UDF Baseline					
					Data Date: 27-Dec-10		•

vity ID	Activity Name	OD	RD	Performance % Complete		Start	Finish	PE	UDF BL Start	UDF BL Finish	J
SC10_0370_466	SCOPE COMPLETE	Od	0d	100%	LC-EN-022		10-Dec-10 A	GF.BM			
SC10_0370_476	Closed-out	10d	Od	100%	LC-EN-022	10-Dec-10 A	10-Dec-10 A	GF.BM	04-Nov-10	18-Nov-10	
Five Oceans Ser	vices (PROPOSAL REJECTED BY NE-LCP)										
SC10_0390_143	Consultant Development of Proposal With CTR's	10d	0d	100%	IWS	09-Aug-10 A	31-Aug-10 A	GF.BM	24-Aug-10	07-Sep-10	-
SC10_0290_852	PROPOSAL ISSUED TO NE-LCP	Od	0d	100%	IWS	01-Sep-10 A		GF.BM			
SC10_0290_862	Proposal Evaluated By NE-LCP	2d	Od	100%	IWS	01-Sep-10 A	03-Sep-10 A	GF.BM	08-Sep-10	09-Sep-10	-
Shore based tun	nel										
SC10a_0290_001		10d	Od	100%	DC1401	26-Jul-10 A	17-Aug-10 A	GF.TR	26-Jul-10	17-Aug-10	
SC10a_0290_442	PROPOSAL ISSUED TO NE-LCP	0d	Od	100%	DC1401	17-Aug-10 A		GF.TR	17-Aug-10		
SC10a_0290_452	Proposal Evaluated By NE-LCP	2d	Od	100%	DC1401	17-Aug-10 A	24-Aug-10 A	GF.TR	17-Aug-10	20-Aug-10	-
SC10a_0290_462	WTO Updated and Signed-Off	3d	0d	100%	DC1401	25-Aug-10 A	26-Aug-10 A	GF.TR	17-Aug-10	23-Aug-10	
SC10a_0290_572	WTO AWARDED	Od	Od	100%	DC1401	26-Aug-10 A		GF.TR	23-Aug-10		
Statnett											
	KICK-OFF MEETING WITH CONSULTANT	1d	Od	100%	DC1401	27-Aug-10 A	27-Aug-10 A	GF.TR	26-Aug-10		4
Part 1 DC1130 S	Submarine Piercings Clarification										
	External Scope Execution (Part 1, Clarification)	19d	Od	100%	DC1401	16-Aug-10 A	16-Sep-10 A	GF.TR	27-Aug-10	10-Sep-10	
SC10a_0260_33	9 CONSULTANT ISSUE DRAFT REPORT PART 1	Od	0d	100%	DC1401		09-Sep-10 A	GF.TR		10-Sep-10	
SC10a_0260_34	9 NE-LCP Review of Report and Provide Input As needed	5d	0d	100%	DC1401	10-Sep-10 A	13-Sep-10 A	GF.TR	13-Sep-10	17-Sep-10	-
SC10a_0260_35	9 Consultant Issue Final Report With Updated Changes	5d	Od	100%	DC1401	14-Sep-10 A	15-Sep-10 A	GF.TR	20-Sep-10	24-Sep-10	
SC10a_0290_42	2 Final Part 1 Report Complete	Od	Od	100%	DC1401		15-Sep-10 A	GF.TR		24-Sep-10	-
Part 2 Conceptu	al Methods, Technologies and Applications									<u> </u>	
-	External Scope Execution (Part 2, Conceptual Methods/Applications)	20d	Od	100%	DC1401	31-Aug-10 A	03-Nov-10 A	GF.TR	13-Sep-10	11-Oct-10	1
SC10a_0290_60	2 Part 2 Draft Report Issued to NE-LCP for Review	2d	Od	100%	DC1401	19-Oct-10 A	19-Oct-10 A	GF.TR	12-Oct-10	18-Oct-10	
Remaining Work Critical Remaining V Remaining Level of		Page 14 of	16	File: Pr Baselin		e Packages - TDI Wo	prkplan	<u> </u>	Date 29-Dec-10 E	i-Weekly Report	t Pro



tivity ID	Activity Name	OD	RD	Performance % Complete		Start	Finish	PE	UDF BL Start	UDF BL Finish	JFN
SC10a_0290_6:	12 Part 2 Draft Report updated as required and re-Issued to NE	-LCP 2d	0d	100%	DC1401	01-Nov-10 A	03-Nov-10 A	GF.TR	19-Oct-10	25-Oct-10	
SC10a_0290_62	22 Final Part 2 Report Complete	Od	0d	100%	DC1401		03-Nov-10 A	GF.TR		25-Oct-10	
SC10a_0290_43	32 Closed-out	20d	0d	100%	DC1401	03-Dec-10 A	10-Dec-10 A	GF.TR	27-Sep-10	01-Oct-10	
SOBI Seabed In	stallation / Execution (Conceptual Design)										
Prep. Scope De	velopment (Research and Studies)							•		_	
SC10_0370_426	Analysis to identify technologies that are applicable and uses	s 25d	0d	100%	IWS	21-Jun-10 A	13-Sep-10 A	GF.BM	25-Jun-10	03-Aug-10	
SC10_0550_111	Review of capabilities	10d	0d	100%	IWS	21-Jun-10 A	13-Sep-10 A	GF.BM	07-Jul-10	20-Jul-10	
SC10_0550_141	Bathymetry Survey	10d	0d	100%	IWS	21-Jun-10 A	23-Jul-10 A	GF.BM	18-Jun-10	06-Jul-10	
SC10_0550_151	Ground Leveling	10d	0d	100%	IWS	21-Jun-10 A	10-Dec-10 A	GF.BM	18-Jun-10	06-Jul-10	
Pre-Installation	Tasks Based on (Other) SOBI Study Results							<u> </u>			
SC10_0550_121	Cable Spacing Assessment	1d	Od	100%	IWS	02-Aug-10 A	10-Dec-10 A	GF.BM		18-Nov-10	
SC10_0550_131	Determinantion of Environmental Conditions	1d	0d	100%	IWS	31-Aug-10 A	06-Dec-10 A	GF.BM		31-Jul-10	
SC10_0550_171	HDD/Shore Approach	1d	0d	100%	IWS	06-Sep-10 A	10-Dec-10 A	GF.BM		30-Sep-10	
SC10_0550_161	Rock Trenching	1d	0d	100%	IWS	01-Nov-10 A	10-Dec-10 A	GF.BM		30-Sep-10	
Other Cable Pro	otection Methods]							
SC10_0370_436	Mattresses	30d	0d	100%	IWS	21-Jun-10 A	15-Sep-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_486	Articulated pipe	30d	Od	100%	IWS	21-Jun-10 A	16-Sep-10 A	GF.BM	18-Jun-10	03-Aug-10	
Scope Develop	ment - Installation / IRM Conceptual Design				<u> </u>			<u> </u>			
SC10_0550_091	Identification of Vessels, owners and specifications	10d	0d	100%	IWS	28-Jun-10 A	08-Oct-10 A	GF.BM	18-Jun-10	06-Jul-10	
SC10_0370_546	HDD/Shore Approach Cable Initiation	10d	0d	100%	IWS	28-Jun-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_566	Matresses	10d	0d	100%	IWS	28-Jun-10 A	16-Sep-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_576	Sand Bags	10d	Od	100%	IWS	28-Jun-10 A	23-Jul-10 A	GF.BM	18-Jun-10	03-Aug-10	
		Page 15 of	16	File: Pr	iority Workscor	pe Packages - TDI Wo	orkplan		Date	-	
Remaining Work Critical Remaining	♦ Milestone % Complete Work ▲ UDF Baseline MS	1 450 13 01	_•	Baselin						3i-Weekly Report	Progress I
-	of Effort UDF Baseline										
				Data D	ate: 27-Dec-10						

Activity ID	Activity Name	OD	RD	Performance	LC_WTO	Start	Finish	PE	UDF BL	UDF BL	
				% Complete					Start	Finish	JFM
SC10_0370_506	Support Vessels	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_516	Transpooling	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_526	Transit	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_536	Mobilization	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_556	Cable Laying	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_596	Repair	10d	0d	100%	IWS	16-Jul-10 A	28-Oct-10 A	GF.BM	18-Jun-10	03-Aug-10	
SC10_0370_606	COMPLETION MILESTONE- Installation / IRM	0d	0d	100%	IWS		03-Dec-10 A	GF.BM	18-Jun-10	03-Aug-10	-
SOBI Installatio	n (Conceptual Design)			1				<u> </u>	1	1	
SC10_0010	Development of Installation conceptual design as based on Study Results	30d	0d	100%	IWS	02-Aug-10 A	10-Dec-10 A	GF.BM	19-Nov-10	14-Jan-11	
SC10_0030	Develop High Level Installation Schedule	10d	0d	100%	IWS	02-Aug-10 A	15-Sep-10 A	GF.BM	17-Jan-11	28-Jan-11	
Inspection, Rep	pair, Maintenace (IRM)]		<u> </u>	
SC10_0070_081	Determine Inspection Regime required for life of field operations	10d	0d	100%	IWS	16-Aug-10 A	28-Oct-10 A	GF.BM	06-Oct-10	20-Oct-10	
SC10_0530_087	Determine potential maintenance requirements	10d	0d	100%	IWS	16-Aug-10 A	28-Oct-10 A	GF.BM	21-Oct-10	03-Nov-10	
SC10_0570_083	Assess repair scenarions for cables protected by varying technologies	15d	0d	100%	IWS	16-Aug-10 A	28-Oct-10 A	GF.BM	04-Nov-10	25-Nov-10	
SC10_0580_084	Develop repair method statements and costs.	15d	0d	100%	IWS	26-Aug-10 A	28-Oct-10 A	GF.BM	26-Nov-10	16-Dec-10	
SC10_0540_089	IRM Scope Complete	0d	0d	100%	IWS		28-Oct-10 A	GF.BM		16-Dec-10	

Remaining Work	•	Milestone	% Complete	Page 16 of 16	File: Priority Workscope Packages - TDI Workplan	Date	
6	•			_		29-Dec-10	Bi-Weekly Report Progress
Critical Remaining Work	Δ	UDF Baseline MS			Baseline:		
Remaining Level of Effort		UDF Baseline					
					Data Date: 27-Dec-10		

Appendix C- Gap Registry

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	R	I	Routing analysis based on surveys conducted by Hydro in August and September 2007
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	Ca	U	Redundant cable details
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	R	Q	Who recommended the corridors?
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	lc	С	FJG says iceberg risk is only to be considered to 70 m. Scour data on Labrador side supports this. Only one observation on NL side.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	R	V	Protection from natural bathymetric corridors
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	Р	С	Proposed water jet trenching in deeper sections
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	Р	U	Risk of damage by fishing gear and ship traffic.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	Р	С	1.5 km tunnel on Lab. Side and 3.5 km tunnel on NL side.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	С	U	Current details
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	I	U	Risks deemed by installation contractor
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	С	I	HVdc cables in high currents in Cook Strait in New Zealand by the CIS Nexans Skagerrank?
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	I	V	Assumption that the cable laying vessel would need support tugs [Vessel Capabilities]
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-1	I	С	Marine spread for laying and trenching to be mobilized from Europe
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-2	Р	V	Estimate: one tunnel, 392.9 M, two tunnel, 434.1 M
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	R	U	Additional information required in the upper 2-3 m of the seabed along the route as well as geological conditions at depth for tunneling
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	Ca	Q	Thermal resistively as it relates to cable design

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 57 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	R	С	Clay and organic material that may contribute to high thermal resistively are assumed to not be present [review with env. Group]
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	Ca	Q	Cable design calcs are mentioned. What cable design calcs?
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	lc	U	Iceberg scours in shallow waters - recommended camera review [Steve's surveys?]
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	I	U	Likelihood of free spans
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	С	U	Full current details - daily, weekly, annually
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	R	U	Survey data between KP29 and KP23 [32?]
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	Ca	С	Spare cable length of 2000 m + 4 joint repairs at the minimum
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	I	U	Post lay surveys in operations period
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 1 - Executive Summary	E-3	0	U	Repair preparedness plan and repair procedure
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-1	0	I	April 2007 Hydro contacted Hatch to undertake a program of studies
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-1	0	I	Statnett of Oslo
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-1	R	I	Proposed route and landfall alternatives have been derived from the results of a multibeam bathymetry, geophysical and ground-truthing survey undertaken by Fugro in 2007
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-1	I	V	Iceberg scours are 1-2 m deep
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-1	lc	С	Iceberg protection is required for 70 m water depth or shallower
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-3	R	I	Desktop study and recent bathy survey undertaken by FJG in Aug. and Sept. 2007. MV Cansea and MV Anticosti.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-5	R	V	The sub-bottom profiler is subjective, with uncertainties associated with the bedrock/overburden interface, leading to significant deficiencies in quantities for the cable protection

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 58 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-5	R	V	Detailed seabed sediment distribution is unclear, leading to significant deficiencies in quantifying the cable protection
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	1-5	R	U	Targets identified from the side scan sonar data have not been visually verified. Interpretation of targets is not definitive
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-1	Ca	С	Min. lateral separation of 20 m (Eastern Corridor) allowing flexibility for repairs. 200 m recommended width
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-1	R	I	Table 2.1 - Summary of Eastern Route Corridor
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-4	Ca	С	Min. lateral separation of 20 m (Western route corridor) 175 m recommended overall width
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-4	R	I	Table 2.2 - Summary of Western Route Corridor
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-6	Р	С	Tunnel alternative 20 m separation, 300 m wide
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-6	Ρ	l	Tunnel summary table 2.3 and 2.4
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-6	Ρ	С	Recommended tunneling to 70 m water depth
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-8	Ρ	С	Rock trenches to 70 m water depth
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-9	Ρ	I	Table 2.5 - Tunnel from Forteau Point to Mistaken Cove - Eastern Route Corridor
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-13	Ρ	I	Table 2.5 - Tunnel to Forteau Point - Western Route Corridor
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	R	I	Sediments and sediment interpretation
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	Ρ	U	Rock trenching
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	Ρ	U	Rock dump design
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	lc	U	Risk analysis for iceberg scour

		T			Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 59 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	I	U	Shallow water cable installation
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	Р	С	Tunnel routing
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	R	U	Ship traffic
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	Р	U	Fishing activity
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	Р	С	Discussions of rock dump size with fisherman
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	R	U	archaeological find procedure
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-17	R	U	Landfall construction plan
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	2-18	С	С	Need for full water column measurements at 15 min. intervals
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-1	R	U	Exclusion zones
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-1	R	U	Coldwater corals [discuss with Steve]
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-1	R	V	Ideal sediment is < 40 kPa for cable lay
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-1	Ρ	С	Preferred trenching is water jetting
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-1	R	U	Protected natural reserves
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-4	Ρ	U	Extent of near shore wave action
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-4	R	U	Seismic activity along fault lines - ground displacements
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-4	Ρ	V	Slopes steeper than 15 degrees should be avoided for jetting operations

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 60 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-4	Ρ	U	Possible abrasion issues in shallow water
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	I	I	Vortex shedding and cycling drag at free spans - avoid!
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	I	V	In water depths less than 10 m, cable laying offshore vessels cannot operate
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	I	I	Inshore to be done with smaller spreads
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	R	U	Corals
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	Ca	U	Thermal resistively - important factor in cable design. A survey task is to provide data regarding the thermal resistively for impact into the cable design basis.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	Ρ	U	Trawl boards and beams [???]
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-5	Ρ	U	Grapnels, anchors, and heavy deadweights
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-6	Р	С	Recommended 1 m backfill over cable, hard ground 0.5 m over cable
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-6	Р	U	Sinking vessels!
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-6	Р	U	Anchor penetration
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-6	Ρ	Q	Setup anchorage exclusion zone do-able?
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-6	Р	U	Emergency ship grounding considerations
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	0	U	"Heavy Plant"?
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	Р	С	"disturbance of seabed down to several meters depth"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	0	U	Oil and gas planned exploration

	1	•			Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 61 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	I	U	port facilities and bridges
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	R	U	Outfalls
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	R	V	Any existing cables buried [later in the report it is stated that there are no cables buried in the straight]
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	Ca	С	Cable - 2x water depth separation Pipelines - 3x water depth Telecable - 2km to be maintained for repeaters
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-7	Ca	U	Future cables
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	R	V	Wrecks older then 100 years are considered archaeological importance. Min. offset 100 m.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	R	V	500 m wreck offset, 100 m arch. Offset, 100 m large debris offset
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	R	U	Military activities and exclusion zones
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	0	V	Currently the Canadian legislation is working to be in accordance with UNCLOs
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	0	U	Mines???
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	3-8	0	U	Dump Sites??
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	4-1	R	I	Most geophysical data came from FJG 2007
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	4-1	Р	I	<u>1970s methods</u> - bedrock tunnel beneath strait - 2 bedrock[check ref] - lay cables in premade [check ref]
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	4-1	R	1	Bathy Resources - FJG 2007 - Route Survey and Interpretation Report - FJG 2007 - Desk top study - FJG 2007 - Bathy recon survey - AMEC Earth and Envi 2008 - CCORE 2007 Ice Scour Risk - JW 2007 Strait of Belle Isle Constraint Mapping Report

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 62 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-1	R	С	Eastern route is 27.989 km Western Route is 35.123 km
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-2	Ca	С	Eastern route proposed to contain 3 cables
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-2	R	I	Study has defined zones as landing being WD = 0 m, Near Shore being 0 m to 50 m, Strait being 50 - 150 m.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-5	R	I	L'Anse Amour beach is sandy and 1 km long by 20-30 m wide
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-5	R	I	Behind raised beaches the valley side rises more than 100 m above sea level
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-7	R	I	The water depth increases steadily reaching 50 m at 1.6 km from the landing point [which route is this?]
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-7	R	С	Maximum gradient along track is < 3 deg.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-8	R	I	Table 5.4 - Summary of near shore conditions
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-8	R	V	<u>Lab-NL</u> - hummocky topography with historical iceberg plough marks - sediment cover variable, sometimes less than 1 m - Shallowest point is 64 m [?] - Shallow area susceptible to iceberg scouring - Suggested significant rework of sediment in this area
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	I	Up to 6 m of sediment near KP 13
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	V	channel followed from KP 0.5 to KP 13
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	I	KP13 to 14.2, thin sediment < 1.0 m rarely more than 2 m thick
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	lc	С	some following of historical iceberg marks occurring
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	I	sediment cover variable to KP20.5
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	С	Climbs from 106 m to 50 m between KP 19 and 23.77

r		1	T	-	Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 63 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	I	Two steps in climb: HP 21.07 at 90m and 80 m at KP 22.2
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	С	Route corridor has been optimized to try and use as many areas of sediment as possible
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	I	50 m isobath located at KP23.7 where bedrock is at the surface or under a thin lay deposit
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-9	R	Ι	Table 5.5 - Summary of conditions - SOBI
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-14	R	Ι	Table 5.6 - Summary of Conditions - Near Shore Mistaken Cove
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-14	R	Ι	Vertical bedrock steps 2m - 6m KP 23.776 - 26.996
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-14	R	U	"Sediment migration identified may provide inadequate protection of installed cables"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-15	R	I	Table 5.8 - Areas of Sediment Migration
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-15	R	С	No excessive gradients have been found along the route (>15 deg), therefore it is not expected to encounter Sediment stability hazard's.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-15	R	U	Bedrock steps
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-15	R	I	Table 5.9 - Areas of bedrock bluffs
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-16	R	I	Table 5.10 Areas of Bedrock Outcrops
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-17	Ca	V	No thermal resistively measurements have been acquired
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-17	Ρ	I	Trenchability assessed based on SBP interpretation and isopach chart
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-17	Ρ	С	Table 5.12 - Trenchability - Eastern Route e.g. KP 0.35-0.4, soil t is 0-2m = trenchable
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-21	R	I	Table 5.13 - SSS Targets +/- 10 m from Centerline

r		-	T	-	Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 64 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-23	R	I	Table 5.14 - Turning points, western route corridor
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-27	R	I	Table 5.16 - Summary of near shore condition - western corridor 0-50 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-28	R	С	KP 15.427 - Paleo plough marks
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-28	R	I	KP 21.912 - max depth of 124 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-28	R	С	maximize sediment depth and maintain min 600 m offset from easterly route
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-28	R	Ι	KP 22.847 - KP 25.5 - particularly uneven topography due to plough marks
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-28	R	С	KP 25.5 to KP 28.723 - routing for sediment coverage
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-31	R	I	Table 5.18 Near Shore Mistaken Cove
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-32	R	I	Table 5.19 - Landing pt, mistaken cove
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-32	R	I	Table 5.20 Sediment Migration
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-33	R	I	Table 5.21 Bedrock Bluffs, Western Route
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-34	R	I	Table 5.22 Areas of Bedrock at Seabed
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-34	R	I	Soil thickness between 0 and 1 m from KP 29.7 to KP 34
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-34	Ca	U	Thermal resistively
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-34	Ρ	С	Table 5.24 gives estimated trenchability
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-38	I	I	No crossings have been identified

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 65 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-39	R	I	Tunnel Route, Forteau Point to Western Corridor:
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-39	R	I	Joins route at KP 1.2, at 70 m water depth
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-39	R	I	Photo of Forteau Point
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-41	Ρ	С	Yankee point tunnel proposal to carry cables to 70 m offshore
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-42	R	С	Table 5.27 - Borehole lay, Yankee Point
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-43	Ca	С	No thermal data for Forteau Point Tunnel route
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	5-43	Ρ	С	Table 5.30 - Trechability data
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-1	R	I	Environmental conditions Overview
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-1	I	V	April to Sept. as working window
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-1	I	V	July to Sept. as optimal temp.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-2	I	I	Wind Speeds - fig. 6.2
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-3	I	I	Fig. 6.3 - Monthly wind rose
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-3	I	V	Main wave directions are W and SW with height rarely greater than 3 m
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-3	С	V	Currents are greatest on Labrador coast and at surface
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-4	С	V	Highest currents speeds recorded are 5.1 kts at surface and 3.4 at bottom
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-4	I	U	CCORE report is thorough and attempts to model ice conditions. But, it predates survey so does not use latest bathy data but relays on digi. Data from 1992 (Woodward)

		1	1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 66 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-4	lc	С	Table 6-5 - Iceberg grounding areas
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-4	lc	С	Normally icebergs travel down Western channel of SOBI, grounding in water depths less than 70 m. Sometimes icebergs travel north along eastern side
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-6	lc	I	Table 6.2 - Plough Mark Scour Depths - 2 m greatest depth risk
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-7	lc	I	Table 6.3 - Plough mark scour cover depths for shielded - non-shielded contact events
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-7	lc	С	Pack-ice scour risk - no risk data analyzed previously
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-8	lc	I	Table 6.4 - Ice Keel/ Cable contact events
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-8	R	I	Water temp - 9-10 deg surface max, to < 0 deg in winter
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-9	0	I	Water salinity
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	I	Main fisheries - lobster, scallops, shrimp, cod, capelin, Greenland halibut
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	I	Lobster - shallow water, spring, 8-10 weeks, more on Lab. Side
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	I	Shellfish - Iceland scallop dragging, 45-55 m, uses drags/dredges pulled along seabed
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	I	Shrimp - 150 m to 350 m, closest fishing is Esq. Channel
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	U	Shrimp trawling in the strait
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-10	Р	I	Fig. 6.8 - Commercial Fishing Figures
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-12	Р	I	Cod fishing - long-lining, gill nets (fixed anchors to seabed), cod traps with anchored boxes
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-13	I	V	No cables or pipelines that cross proposed routes

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 67 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	U	Wrecks and debris - 40 identified with limited position data, 1 has arch. Importance (HMS Raleigh - ANY REMAINING EXPLOSIVES?)
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	U	May be unexploded ordinance lost in shallow water near wreck site
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	U	Historical assessment required for landfall sites
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	V	Any wrecks thought to be of arch importance require to be avoided by 100 m
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	V	The arch. Responsible department has the right to request video inspection data and any other data related to the route
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	R	I	Close liaison with archaeologists recommended from the get go
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	I	U	New legislation from UNLOSC requirements from Jan. 2008 may affect cable installation and operation
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	6-14	Ca	U	Details of cable between NB and PEI
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	7-1	R	С	Route selected based on sediment thickness, among other reasons
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	7-1	R	I	Table 7.1 Recommended Eastern Corridor
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	7-1	R	С	Routing (Plough marks, sediment, etc.)
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	7-3	R	I	Table 7.2 - Recommended Western Route Corridor
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	lc	U	Recommended to obtain more data for pack ice limits, iceberg patterns, currents, wind and waves, and water temp.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	lc	С	Recommend CCORE Ice Scan report 2007 be revised and sampling devices be deployed to measure 12 month data
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	R	U	no previously installed subsea lines in existence
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	0	I	no hydrocarbon concessions required

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 68 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	Ρ	С	Report recommends discussions with Fishing industry to understand rock protection size
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	Ρ	I	Trawling and dredging are favored fishing methods
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-1	Р	Ι	Recommend temp. protection until laid cables are covered to depth
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	Ι	V	Special notifications required for ship traffic during installation
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	I	С	minimum lay curve radius of 100 m
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	Ca	С	min separation of 20 m based on previous MI cable installation
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	Ca	С	5 m min separation in trenches
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	R	U	EBSA requires special treatment
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	8-2	Ca	U	Compass deviation considerations which might affect cable separation we recommended to be in line with accepted practice of max. acceptable deviation of 5 deg (Dutch, UK, German guidelines)
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-1	I	U	Use ROVs to lay cable between boulders and outcrops
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-1	I	V	ROV equipped cable layer?
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-1	I	С	Frequent stops during the laying with backing and re-laying are to be expected in order to verify that the cable is appropriately positioned through seabed irregularities around rocks and boulders
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-1	R	I	High slope angles can lead to fluidization of sediment and exposure of cable
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-1	R	I	Areas of rock steps and bedrock bluffs are present and will require protection for the cable (minimized for route selection).
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-2	С	С	Strong currents are likely to disrupt operation
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-2	I	С	Installation window is April to September

			Route,		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 69 of 333 Description
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-2	Р	С	Water trenching for protection
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-2	Р	Ι	Ploughs can be used but aren't recommended
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	9-3	R	U	Has archaeological assessment of landfall sites been completed?
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	Ca	С	3 cables in Eastern corridor and 2 in Western
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	I	Geotech samples recommended to be taken along the route to confirm sediment interpretation and establish trenchability of sediments
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	Ρ	С	Trenching depth variable between 1m and 3 m maximum (in areas of possible enhanced iceberg scour)
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	lc	U	Re-calculated risk analysis CCORE 2007 for ice scour based on the MBES data collected in 2007
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	I	U	Cable installation from small barges in Mistaken Cove (min. water depth for cable vessels is nominally 10 m found 2.442 km distance from the landing point)
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	U	Bedrock structure details
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	I	App. A: Route Position Listings
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	I	App. B: Long. Profiles
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	С	App. C: SSS Target Listings (Anything useful here??)
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	I	App. D: Grab sample listings
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	R	I	App. E: Photographic Listings
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 2 - Cable Routing	10-1	Р	I	App. F: Fishing Equipment
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	1-1	Ca	С	Principle reason for two corridors is to reduce possibility of simultaneous failure of cables

Muskrat Falls Project - CE-44 Rev. 2 (Public)

· · · · ·			1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 70 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-1	Ca	I	Table 2.1 - Pole currents for various voltage levels
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-1	Ca	V	Conductor calcs done with 12 deg C. as acceptable temp. drop over insulation
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-1	Ca	I	Capacity calcs done based on IEC 60287 standard
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-1	Ca	I	Thermal pre-conditions: burial depth is 3 m, separation of 5 m, soil temp at landfall is 12 deg C and max conductor temp. is 55 deg C
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-1	Ca	V	Insulation in a MI cable is not pressurized and cavities may form during cooling after a load drop
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-2	Ca	I	Table 2.2 and 2.3 - Cable Properties as a function of Voltage
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-2	Ca	I	SCOF - self-contained oil filled - impregnated with very low viscosity oil to enable flow along the cable to and from pressurized oil expansion reservoirs at each end
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-3	Ca	I	Availability for cable repair in SOBI may be limited due to physical environment.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-3	Ca	I	In the case of failure, the cable may leak oil for a long period until a repair operation can start
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-3	Ca	I	To avoid destructive water intrusion, oil reservoirs have to contain large quantities of oil
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-3	Ca	С	Oil leaks may be an environmental problem
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	2-3	Ca	I	Table 2.4 - Properties of SCOF cable - Generally bigger and heavier than MI

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 71 of 333 Description
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	3-1	Ρ	U	Otter/trawl boards
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	3-1	R	I	Table 3.1 - Eastern Route Sections
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	3-4	R	I	Table 3.2 - Western Route Sections
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	3-6	R	I	Routing with Tunnel on Both Sides - Table 3.3 - Eastern Route Sections
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	3-8	R	I	Table 3.4 - Western Route Sections
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	4-1	I	U	Transition Compounds
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	4-1	I	С	Indoor transition compounds cost more (source???)
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	4-1	I	С	Transition compounds assumed to be 400 m from shoreline on Lab. Side, and 600 m from shoreline on NL side
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-1	Ρ	U	Extent of trawling in region
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-1	lc	С	Suggested that iceberg risk is limited to < 70 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-1	Ρ	С	"Protection against emergency anchoring operations can normally not be obtained by burial only"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-1	Ρ	С	Water jet trenching

	[]			[Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 72 of 333 Description
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-1	Ρ	v	Limestone/soft rock has been previously excavated to 3 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-2	R	I	Rock is grey and brown dolostone, 50% dolomite
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-2	R	I	Inside land on NL side is mostly boggy
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-2	R	I	Yankee point borehole 74-B-D1
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-2	R	I	Dolomite down to about 73 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-3	R	I	Pt. Amour diamond core (74-B-D2)
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-3	R	I	At Point Amour there are 27 m with interbedded limestone (dolostone) and shale that belongs to the Forteau Formation
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-3	Ρ	С	"Tunneling from land and out under the seafloor is a well-proven technique"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	I	С	"Recommend that the gradient be no deeper than 12%"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	С	20 m ² cross section for tunnel
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	V	Cable jointing chamber can be sealed off and pumped dry
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	V	Preferred drilling of micro tunnels is upwards

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 73 of 333 Description
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	С	One or two spare tunnels should be drilled as contingency
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	С	Micro tunnels to have diameter of 300-400 mm
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	С	Table 5.4.3 - Water Jet Trenching
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	С	Micro tunnels to be laid with steel tubes. If rock is poor quality, micro tunnels have to be installed during drilling. Technology not yet fully developed.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-4	Ρ	U	Technology anticipated to be commercially viable in 2 to 3 years.
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	Ρ	U	Use subsea excavator for rock trenching
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	Ρ	I	Only good to 15 Mpa
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	Ρ	Q	Which unit??? Www.scanmudring.no
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	I	С	20-70 m - offshore construction vessel with crane and winch capacity
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	I	С	2 m to 20 m - barge and mobile crane
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-6	Ρ	С	Table 5.2 - rock trenching lengths
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-10	Ρ	С	Lay in concrete Culverts or use sand protection with rock fill

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 74 of 333 Description
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-10	С	С	Uncertain whether this can be done to currents
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-10	lc	U	Iceberg impact on concrete culverts
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-10	Ρ	С	Micro tunneling, plug application "Usually done" but yet technology is not developed??
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	5-11	Ca	С	"Stats show cables that are installed have high reliability"
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-1	I	С	There are only 2-3 purpose built cable installation vessels
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-1	I	U	Tug requirements
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-5	I	I	Installation analyses will be executed covering areas of cable installation work that requires analyses and computation. These analyses will be cased on governing documents and industry practice
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-5	R	U	Detailed route survey
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-5	Ca	V	Estimated loading for 2-3 cables is 6-7 days
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-5	I	V	18 days from Scandinavia to SOBI
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-5	I	С	Need 30-35 T bollard pull tug
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-7	Са	U	Cable pull-in arrangement

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 75 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-8	I	I	ROV to monitor cable touchdown
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-8	I	С	Cable laying system called Capjet by Nexxans
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	6-9	Ca	U	Cable pull-in at Yankee Point - sensitivity of cable in water
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	U	Time for replacement delivery
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	U	Spares requirements
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	С	Sufficient spares to serve two repairs
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ρ	I	An anchor hitting an unburied cable can damage up to 800 m as seen in Scandinavia
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	U	Number of repair joints required
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	V	Terminations may require up to 6 months delivery
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	U	Repair joint availability
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ca	I	Recommended repair preparedness plan and repair procedure to be pary of supply contract
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	7-1	Ρ	I	Rock removal equipment: Scanmudring, Five Oceans Services, Van Oord

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 76 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ρ	I	Rock costs used on Norned Cable
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ρ	V	Rock trenching costs from Scanmudring - They have worked in NL
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ρ	I	Tunneling costs based on Norwegian experience
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ca	I	Currently a supplier's market for cables
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ca	V	Factories fully loaded for next few years
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ca	V	Costs of cables increase 5-10%/year
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-1	Ca	V	New material costs increased by 25% last year
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-2	Ρ	I	Protection assumed at all route sections and at water depths greater than 70 m
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-2	Ρ	С	Estimated volume is 40,000 m^3 for five cables
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-2	Ρ	С	Assured suitable facilities for rock loading within 4 hours steam
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-2	Ca	I	Table 8.1 - Cost estimate summary for SOBI Hvdc cables
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-3	Ρ	V	Cost increase for tunnel over Rock Trenches is \$40 million

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 77 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	8-3	Ρ	С	Water jetting assumed over 13 km. To use rock dumping instead, it would cost \$17 M more.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	V	European Suppliers Capacity: Nexxans, 250k/year, ABB 300 k/year, Prysmian, 400k/year
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	V	Japanese are more suited for manufacturing oil-filled cables than MI
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	I	Facilities may be upgraded to suit this kind of production
	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	I	Nexxans has in the last year operated the paper-insulated cable facilities in VISCAS factory in Japan
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	I	Manufacturing schedule based on two parallel lines/impregnating vessels available continuously for 14-16 months
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	V	If type testing is required, cable would be ready in 26-28 months.
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	I	Recommended to include at least limited verification type tests of cable and joints
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	С	Both cable alternatives will require two laying campaigns
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	С	Statnett project: delivery of 130 km, 450 Kv HVdc cable, 90 k of which was land based. To achieve 2014 installation, commitments to manufacturing need to be made around 2008. Manufacturing time??
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	I	U	Vessel availability
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Са	I	App. A: Cross sections

			_		
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 78 of 333 Description
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	Ca	I	App. B: Transition Compound
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	0	I	App. C: Project Schedules
2008	DC1130 - Submarine Cables - SOBI Hatch with Statnett, RSW, TGS Volume 3 - Design, Method, Cost and Plan	9-1	0	I	App. D: Cost Estimate
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.1 - Last Paragraph - " Since the avaliable dateare limited and not suitable"	2-2	I	Q	What data will be required to generate mean drift speeds? How do we get this data? How long will it take to get this data? Is there benefit in getting this data?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.2 - Iceberg Density	2-3	lc	Q	Should we use the degree square for which the crossing will take place and not reduce the density by averaging it with the adjoining square that is only 25% of it's value? This would result in more conservertative numbers. Was there any consideration to bathymetric sheilding when using the average?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.2 - Iceberg Density	2-3	lc	I	Quote - "This is approximately 20 times higher than the iceberg density in the Jeanne d'arc region of the grand banks"
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.2 - Iceberg Density	2-3	lc	Q	What is the Standare Deviation for average iceberg density? i.e. What is a bad year and what was the worst year recorded?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.2 - Iceberg Density	2-3	lc	Q	Can we review these numbers including recent data up to and including 2009-2010 ice season? Are there any Trends noticed in ice density? Are the densities increasing. Decreasing, or remaining the same?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.2.5 - Iceberg Drift Speed	2-8	lc	Q	Statement = " Since a grounded Iceberg cannot ground a second time" Question - Why not?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 2.3 - Modeled Grounding Rates	2-9	lc	Q	Statement = " It should be noted thatmodeldoes not account for mathymetric effect." Question - Why not? Question - How would data change if it did reflect sheilding?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.4 - contact Frequency and Cover Depth	3-2	lc	Q	Statement = " the analysis required to evaluate additional clearance" Question - Can C-Core Do this? Question - If so, what infromation is required to complete the calculations?

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 79 of 333 Description
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.4 - contact Frequency and Cover Depth	3-2	lc	Q	Continued Question - Is this calculation based on established principles, or is it R&D Question - Are there guidelines or a basis to cunduct these calculations for burried Cable (apposed to a rigid pipe)
	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.4 - contact Frequency and Cover Depth	3-3	lc	Q	Statement = " Clearance equal to half the scour depth was considered sufficient" Question - What is this bases of this assumption? Question - How does this translate to use of cable vs pipeline?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.4 - contact Frequency and Cover Depth	3-3 to 3- 7	Ρ	Q	General questions for entire section Theis section discussed various parameters like cover depths corresponding to return periods (table 3-2 & 3-3) and relationship between cover depth and return period (graph 3-3 & 3-4), however this is a generalized number for the whole route. Could this be done for smaller defined sections. This could assist in the optimization of protection methodsfor the cable. Additionally, clarification could be given as to wether this information is the mean or max for the whole line.
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.5 - Bathymetric Sheilding	3-4	lc	Q	What is the probability of icebergs contacting cable route at incremental depth ranges?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.5 - Bathymetric Sheilding	3-4	lc	Q	Can it be extablished what bathymetric sheilding is present to determine the max iceberg depth? Then we can analyzise only portions of the route that are above this depth.
2000	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.5 - Bathymetric Sheilding	3-4	lc	Q	What is the probability of icebergs contacting cable if the cable is not covered? What are the forces that a iceberg can exert on contact per depth interval?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.5 - Bathymetric Sheilding	3-4	lc	Q	What soil properties are considered when establishing cover depths for iceberg scours?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 3.5 - Bathymetric Sheilding	3-8	lc	Q	Fig 3-3 Along route 3, there are three sections that indicate iceberg sheilding. Why are the portions of the route inbetween these not considered to be sheilded?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 4.1 - Pack Ice Conditions	4-1	lc	Q	Table 4.1 Can a similar table be produced to indicate Weekly or monthly iceberg observations with totals, means, etc.
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 4.1 - Pack Ice Conditions	4-1	lc	Q	Can we review these numbers including recent data up to and including 2009-2010 ice season? Are there any Trends noticed in the pack ice conditions? Are the densities increasing. Decreasing, or remaining the same?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 4.2 - Pack Ice Scour Risk	4-7	lc	Q	Can probability of ice scour be developed for incremental depths from 0 down to max depth (35m noted for Beauford Sea) Additionally, can a force be determined for each interval.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 80 of 333

					5
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight Section 4.2 - Pack Ice Scour Risk	4-7	0	Q	What happens at shore - min tide -5m and max tide +5m
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight General	all	lc	Q	Do NALCOR have any information on PRISE - Pressure Ridge Ice Scour Experiment?
2008	DC1132 - Fugro Desktop Study - Appendix B Ice Scour Risk in Straight General	all	Ο	Recommendation	Recommend that a scope of work be developed to answer lquestions from this report to further understand the ice interaction in the area of proposed route and to help understand the protection required.
	#4 Studies Undertaken SOBI Cable Crossing Feasibility Study Of Delivering Power From Gull Island Hydro Electric Site To NFLD Teshmont and H Zinder & Associates vol II-Technical Condiderations-appendicies	-	С	I	App. III Bathymetric and Bottom Profiling survey in SOBI NF by NSRC
	#4 Studies Undertaken SOBI Cable Crossing Feasibility Study Of Delivering Power From Gull Island Hydro Electric Site To NFLD Teshmont and H Zinder & Associates vol II-Technical Condiderations-appendicies	-	Ρ	I	App. IV Study for design, time required, construction and cost estimates of a cable tunnel between Lab and NL
	#4 Studies Undertaken SOBI Cable Crossing Feasibility Study Of Delivering Power From Gull Island Hydro Electric Site To NFLD Teshmont and H Zinder & Associates vol II-Technical Condiderations-appendicies	2-4	R	I	Drill Hole NL-side Bottomed in Quartzite at 574' depth hard 20000 to 50000 psi, soft 6000 to 10000 psi
1973	#4 Studies Undertaken SOBI Cable Crossing Feasibility Study Of Delivering Power From Gull Island Hydro Electric Site To NFLD Teshmont and H Zinder & Associates vol II-Technical Condiderations-appendicies	14	lc	V	Icebergs observed each day no evidence of gouging in photos, or TV unlikely exceed draft >200 ft

			Route,		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 81 of 333 Description
1973	#4 Studies Undertaken SOBI Cable Crossing Feasibility Study Of Delivering Power From Gull Island Hydro Electric Site To NFLD Teshmont and H Zinder & Associates vol II-Technical Condiderations-appendicies	-	R	1	App. III Bathymetric and Bottom Profiling survey in SOBI NF by NSRC
	#5 Final Report On Bathymetry and Bottom Profiling survey In SOBI NL NSRC/Teshmont	-	R	I	Sub-bottom profiles and bathymetry superseded by Fugro's Report
1974	#6 Preliminary Data For The Tunnel Crossing the SOBI Teshmont Consultants Vol 1	-	R	I	Section 5 Diamond drill hole Point Amour, Southeast Labrador, Yankee Point, Northeast Labrador Section 6 Extension Diamond Drill hole Yankee Point Section 7 Diamond Drill Hole Point Amour Section 8 Diamond Drill Hole Point Amour, Southeast Labrador reloged by Patrick Harrison Company
1974	#7 Preliminary Data For the Tunnel Crossing Of The SOBI NSRC/Teshmont vol 2	14	lc	V	Icebergs which penetrate the Belle Isle Strait to the vicinity of this survey are unlikely to exceed 200 ft draft and, therefore, would only constitute a hazard to the submarine cable.
1974	#7 Preliminary Data For the Tunnel Crossing Of The SOBI NSRC/Teshmont vol 2	34	С	V	5-6 feet above bottom current 0.3 to 1.3 knots
1974	#7 Preliminary Data For the Tunnel Crossing Of The SOBI NSRC/Teshmont vol 2	34-35	С	I	current and tidal graph
1973	#8 Study For Construction Of a Cable Tunnel Patrick Harrison and Company/ Teshmount Vol II appendix IV Of feasibility Study Delivering Power From Gull Island Hydro- Electric Site to NL	4	R	I	Soft Rock -6000 to 10000 psi Hard Rock- 20000 to 50000 psi Granite- 32000 psi
	#9 Preliminary Report On a Bathymetric and Bottom Profiling Survey In The SOBI NL NSRC/Teshmount	5	R	I	Profiles immediately to the east at distances of approximately 3000 and 6000 feet, show evidence of a fault or faults downthrowing towards the NL side by an amount of 300 to 400 feet respectively.
	#9 Preliminary Report On a Bathymetric and Bottom Profiling Survey In The SOBI NL NSRC/Teshmount	9	R	I	In general across most of the strait a variable thickness of coarse gravel is present
	#9 Preliminary Report On a Bathymetric and Bottom Profiling Survey In The SOBI NL NSRC/Teshmount	10	С	V	Current 1-2 knots

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 82 of 333 Description
1974	#10 Sedimentology Of The Narrowest Portion Of The Strait Of Belle Isle G. Drapeau Atlantic Oceanographic Laboratory, Bedford Institute	Fig 7	R	I	Sedimentary distribution SOBI
1974	#10 Sedimentology Of The Narrowest Portion Of The Strait Of Belle Isle G. Drapeau Atlantic Oceanographic Laboratory, Bedford Institute	Fig 8	R	I	Forteau Bay sediment distribution
1979	#41 The Current In The SOBI Preliminary Report Nordco Ltd.	5	С	V	Velocity 2m off bottom 70.1 cm/sec
1979	#41 The Current In The SOBI Preliminary Report Nordco Ltd.	5	С	V	Velocity 12m off bottom 90.4 cm/sec
1979	#41 The Current In The SOBI Preliminary Report Nordco Ltd.	5-6	С	V	Max Velocity At 12m from bottom 197.2 cm/sec=3.83 knots
1979	#41 The Current In The SOBI Preliminary Report Nordco Ltd.	18	С	V	12m from bottom about 4 knots
1981	#47 SOBI 1981 Program LCDC	4	lc	I	Iceberg Scour Map
1981	#46 Oceanographic Data Collection SOBI Field Program/Draft	Fig 3d	I	V	Wave height 5m (max)
1981	#46 Oceanographic Data Collection SOBI Field Program/Draft	Fig 6	I	V	Wave height/ % exceedance
1980	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	С	V	App D Bottom Current Data
1980	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	С	V	Current Speed (cm/s) vs. Percentage Frequency
1980	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	С	V	2-12m off bottom max 120 cm/s
1980	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	Ο	Ι	App E Meteorological Data
1980	SNC Lavalin	Fig Ex 8 5	I	1	Wind speed max 24 m/s
1980	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	I	V	App F Wave Data
	#45 SOBI Crossing HVdc Transmission Submarine Cable Scheme Vol IV SNC Lavalin	-	I	С	Min -13.4, Max 11.2 (worst Case)
1980	#44 SOBI Crossing Submarine Cable	-	lc	V	App A Scour Probility

		1			Muskrat Falls Project - CE-44 Rev. 2 (Public)
			Route,	Actions:	Page 83 of 333
			Protection, Icberg, Current,	pose Q uestion,	rage os of sss
Year	Report Reference	Page	Cable,	Challenge,	Description
			Installation,	Validate,	
			Other	Unknown, key Info	
1980	#44 SOBI Crossing Submarine Cable	-	R	I	App B Rock and Overburden Tests
1980	#44 SOBI Crossing Submarine Cable	-	R	Ι	App C Bottom Photographs
1980	#44 SOBI Crossing Submarine Cable	2	lc	I	From Belle Isle Westward the water shoals, grounding out the larger icebergs and providing a filter allowing only the shallow draft icebergs to enter the strait proper
	#44 SOBI Crossing Submarine Cable	2	lc	V	Depending on wind, larger icebergs can enter the strait once their drafts have been adjusted to shoaling conditions
	#44 SOBI Crossing Submarine Cable	3	lc	V	Deterioration Processes Calving/Rollover
1980	#44 SOBI Crossing Submarine Cable	3	lc	V	235 feet shore to shore forms restriction or filter which will limit draft of icebergs
1980	#44 SOBI Crossing Submarine Cable	7	lc	V	Once icebergs of any shape pass over the sill they can roll or change orientation so that a deeper draft will be present
1980	#44 SOBI Crossing Submarine Cable	10-14	lc	V	Rectangle can increase draft 110% Sphere stays the same Wedge can increase draft 200%
					Pyramid can increase draft 240%
1980	#44 SOBI Crossing Submarine Cable	20	lc	V	35% of all icebergs able to drift over the sill posses dimensions capable of producing some scour implying 35% of all icebergs entering the Strait will have one dimension in excess of 175 ft
1980	#44 SOBI Crossing Submarine Cable	21	lc	V	5% of population would be wedge or pyramid but due to transition 20% will be used
					20% pyramid
1980	#44 SOBI Crossing Submarine Cable	22	lc	V	65% rectangle 10% Rounded
					10% Rounded
	#44 SOBI Crossing Submarine Cable	22	lc	V	0.6 probility blocky iceberg with draft smaller than any horizontal dimension will drift over the eastern sill
1980	#44 SOBI Crossing Submarine Cable	22	lc	V	0.2 probability that a wedge or pyramid shape on its side will enter
	#44 SOBI Crossing Submarine Cable	25	lc	V	0.1 probability to rotate to a deeper draft pyramid 0.2 probability for a blocky berg
	#44 SOBI Crossing Submarine Cable	28	lc	V	If large icebergs have 195 ft draft 0.027 probability exists 3 in 100 will scour
	#44 SOBI Crossing Submarine Cable	28	lc	V	0.001 or 1 in 1000 draft 225 ft will scour
1980	#44 SOBI Crossing Submarine Cable	30	lc	V	All Probabilities taken into account to produce probability of scour
	#44 SOBI Crossing Submarine Cable	32	lc	V	2 in 10000 will scour due to rotation but after deteriation changes to 3 in 1000 Once draft 165' 2 in 1000
	#44 SOBI Crossing Submarine Cable	34	lc	V	Straight line distance 3 in 100 will scour the cable route
1980	#44 SOBI Crossing Submarine Cable	34	lc	V	Optimized route 0.003 probability or an event every 4.4 years
1980	#44 SOBI Crossing Submarine Cable	Section 2-5	R	1	HB Orthoquartzite 213 Mpa Compressive Strength HB Limestone 357 Mpa Compressive Strength Precambrian Gneiss 111 Mpa Compressive Strength Forteau Dol-Limestone 257 Mpa Compressive Strength Brador Orthoquartzite 226 Mpa Compressive Strength
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-4	I	I	Wind speeds 20.8-25.3 km/hr Max Recorded 47.6 km/hr Gust 85 km/hr
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-4	I	V	<u>Wave Height</u> Max Observed 4.4m Max Measured 7.3m Mean wave Height 1.03m

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 84 of 333 Description
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-4	С	V	Surface current max (185cm/s) 3.6 knots Max bottom current 2.75 knots (12m from bottom) Max (2m from bottom) 2.2 knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-5	Ο	Ι	Tides 1m mean tide
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-5	0	Ι	1.5m large tides
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-5	lc	V	From side scan sonar 8 scours seen 36-83m depth 2 scours in 83m off Point Amour No evidence of scour in deep water off Forteau Bay
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	1-5	lc	V	Scours >70m means overturning/ Calving occurs for bergs to pass the sill
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	2-3	lc	V	Both scours in 83m water the larger of the two is 250m long, 10m wide, 1m deep scoured 1m down to the bedrock (Plate 7)
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	2-4	lc	I	Eastern Area 10 scours 4 close to shore (Ice ridge scours) 6 berg scours (55m depth)
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	4-2	I	I	Avg Wind Speed 29.4, 28.6, 35.2, 34.7 km/hr
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-1	С	I	Dawson 1906 Current Study West 3.45 Knots East 2.83 Knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-2	С	I	Roughton 1964 Westward 3.4 Knots Eastward 2.8 Knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-3	С	V	The strongest westward surface current was stated at 5 knots near the northern shore, strong tidal and meteorological effects superimposed/ eastward was 3.5 knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-3	С	I	Nordco 2m from bottom 4knots 12m from bottom 3.15 knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-7	С	V	Max 2m from bottom 2.2 knots
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-7	С	V	Max Current Velocity(Surface) cm/s with wave action Yankee Point 131.8 Point Amour 112.1 Watts Point 88.8 Carrol Point 170.9
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-8	С	V	Max Current Velocity(Surface) cm/s 1m depth Yankee Point 130 Point Amour 126.3 Watts Point 130.1 Carrol Point 185.5

		-			Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 85 of 333 Description
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	Fig 6	С	Γ	Oscillating Current
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-10	С	Ι	Max observed fluctuations in direction at Yankee Point, Point Amour, Carrol Point, and Watts Point 71.1,31,63.5, 58.1 degrees
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-11	С	Ι	Currents can be opposite if high wind speed and direction opposite the tidal direction
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	5-17	Ι	Ι	Max predicted wave height 10.7m or 8.4m
1980	# 43 SOBI Crossing HVdc Transmission Submarine Cable Crossing Volume III SNC-Lavalin	6-1	lc	Ι	1974 NSRF reported scour off Point Amour 110m while studies in 68 and 73 showed no scours in this area
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	1-5	Ca	I	<u>Cables</u> -Oil Filled cable system appears more economical than gas filled and is presently the preferred system (Cost Basis) -Oil filled cables require stop joints which in turn present a fire hazard in the shaft
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	2-2	lc	V	Ice -Sill Limit Iceberg > 75m
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	-	С	V	<u>Currents</u> -Currents are tidally dominated max< 3.5 knots *Current info (Fraquharson & Bailey)
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	-	Ι	Ι	<u>Wind</u> -Max Gust 160 km/hr St Anthony -140 km/hr Battle Harbor
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	3-7	Ca	С	<u>Oil Filled Cables (Tunnel)</u> -Operation of HVdc oil filled cables in a very deep shaft, connecting to a long tunnel run is an unprecedented requirement. The hydraulic head of the oil column in the shaft cables is too high to be accommodated without hydraulic sectionalizing for which stop joints are required. These joints have been known to be critical components in any AC oil filled cable system <i>therefore they are avoided</i>
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	-	Ca	V	<u>DC</u> Very little operating experience with DC stop joints -Stop joint failure and replaced -Hair crack in stress central electrode

			Route,		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 86 of 333 Description
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	4-13	R	Ι	Attempt made in 75 to obtain diamond drill core information in the SOBI (<i>This was unsuccessful</i>)
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	4-14	R	I	Medium Penetration Profiling Survey -Concluded that faulting was not present in any major extent and sedimentatary beds continuous under the strait -Only major fault 6km off NL coast -Some problems may be encountered under the deep trench along lab coast (geologic Conds)
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	4-16	R	I	Downhole Velocity Logging -Number of faults and fault zones present
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	4-17	R	I	14 Faults (seismic Interpretation)
1979	# 42 SOBI Crossing HVdc Transmission - Tunnel Scheme SNC-Lavalin Engineering Report, Cost Estimate and Schedule	4-20	R	U	<u>Future Planning</u> -Substantial increase in the amount of Geotech detail to be provided by rock core recovered from additional borings -Boreholes diamond Drilled 545 m
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-1	I	I	Wind Speed South Side 10m/s North Side 6m/s Max Gust 23.6m/s
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-4	I	I	<u>Tides</u> 1m mean tides 1.5m large tides
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-5	С	I	<u>Current</u> Bottom Max 2.75Knots (Lab Coast) Surface Currents 3.6 knots (Lab Coast) 2.8 knots (NL coast)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-11	lc	С	Iceberg Scour at 83m
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-2	Ca	I	Usual Cable Failure Reasons 1. External Mechanical Damage 2. Repair Joints 3.Factory Joints 4. Sheath Failure 5. Amour Corrosion 6. Other
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-8	lc	I	0.03 probability of iceberg grounding between Point Amour and Yankee Point (Kollmeyer)

		1	_		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 87 of 333 Description
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-8	lc	I	0.003 probability of iceberg grounding along optimized route (Kollmeyer)
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-8	Ρ	I	To Provide protection, the cable must be buried below the rock surface over its entire length
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-9	Ρ	Q	Shore areas (trench, adit tunnel, borehole) Most practacle (trench cut in bedrock)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-9	Ρ	I	Trench max layer thickness 0.9m and depth 1.5m width 0.6m (English Channel)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-9,10	Р	L	<u>Trawls and Anchors</u> Anchors (1.5-2m) sandy bottom Trawls (Fishing Gear) 0.1-0.3m
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-10	Р	I	If protected from icebergs it is more than adequately protected from fishing gear
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-14	Ca	Q	<u>Cable Selection</u> 1. MI 2. MI and gas Pressurized 3. Oil Filled
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-16	Са	I	Oil Filled cable is the logical choice for the purposed submarine cable crossing * Reasoning Solid cables are not tested for service at 400kV Only one supplier STK (Based on 300kV test) No cost advantage Oil filled max temp 85 degrees, solid 55 degrees Thermal Resistively of solid insulation reduced current carrying capacity No warning of the existence of a pinhole or crack like oil filled Oil filled provide extra reliability under emergency conditions (Temp/Stress)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-19	С	I	Reliability 100% transmission capacity with one cable on permanent outage Crossing consists of at least 3 cables (Due to the fact any fault in the remaining cable would lead to loss of load)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-20	Ρ	V	-From experience with cables embedded in the seabed it can be concluded that for the strait project with the cables in a rock trench covered with overburden the risk would be essentially 0 -Where rock trench is located in sound rock the risk is approximately 0, the trench may pass through areas of less competent rock, particularly where faulting occurs
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-21	lc	V	14 faults most depth> 70m Probability of Iceberg is 0.03 Probability of Iceberg ground on fault 0.00023 (58 year return period)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-21	lc	С	With trench and burial (200yr return)

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 88 of 333

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-23	Ca	I	<u>Cable Failure (table 4.1 other cable faults applied to the Strait)</u> Rate 0.0377 Strait Crossing 18km 0.0068/year 1 failure every 147 years
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-24	Ca	С	Repair time (Assumed 1 year) Reasoning: Repair time 10 days to 2 months when ship can become available repair time estimated at 1 year due to the shipping season
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-32	Ca	I	Oil Spill data for oil filled cable
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	5-3	R	I	Location Selection survey 1979 (Point Amour-Yankee Point was selected): 1. Shortest most economical cable 2. No advantage to be gained by deep water (trench whole way) 3. Overburden is generally the same 4. Machine for trenching can operate >100m (No benefit of going in shallow water) 5. Geological studies indicate bedrock and trenching conditions generally the same throughout
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	5-8	R	I	Bedrock Conditions For Trench 22% Hard Limestone 17% Shaley Limestone 17% Sandstone 19% Shaley Sandstone 25% Shale
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-1	I	I	<u>3 options for install:</u> 1. Lay cables on sea bed and subsequently bury 2. Lay and bury in a simultaneous operation 3. Cut trenches first and subsequently lay cables in trench
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-1,2	I	1	Options For Install: Trench first and lay cable afterwards (Option 3 preferred) <u>Reasoning:</u> -Carry out excavation over any time period, prior to cable laying and without exposing cable to risk -Possible to use more than 1 excavating rig -Possible to interrupt excavation operations if needed -Cables can be laid in short period of time on an established and proven route cables subjected to minimum handling -Blasting can be utilized during excavation on route deviation to avoid obstacles
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-2	Ρ	I	Removal Of Overburden -Conventional Dredging (max 60m depth) -Monitors (Little control of overburden flushed) -Crawler Mounted Dredging Equipment -Jet Barges (recommended 6-19)

r					Page 89 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-5,6	Ρ	U	Rock Trenching 1. Drilling/Blasting (30-40m proven cost is high and procedure is slow) 2. Shaped Changes (Granite/Sandstone results negligable) Unsuitable 3. Trench Cutting Machine (needs development) Trench Cutting Machine -Operate on the rock surface controlled by vessel -A drum rotating around horizontal axis with tungston carbide teeth (Cutting/ripping) -Scroll rotating around a vertical axis with diameter equal to trench width tungston carbide tipped teeth again (Cutting/ripping) -High Speed rotating wheel tungston carbide tipped teeth to remove rock (Grinding action) -Two narrow high speed rotating discs diamond tipped teeth parallel slots in the rock
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-7	Ρ	Ι	Ripping (1 Pass) Grinding (1 Pass) may leave rock to cut and remove later Two narrow Slots (rock inside the slots needs to be removed 2 passes)
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-9	I	I	Boreholes (Inclined)- Major problem with this difficult installing the cables. Treading of cables through the drill holes would require specially designed rollers at close spacing -Trenching seems to be best option on and offshore
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-11	Ca	С	Cable Manufacturers/Installers *No single company or organization is able to tackle the complete scheme
1980	#42A SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin	6-20	Ρ	U	Trenching 1. The Land and Marine RTMII (Rotating wheel Ripper) 2. HB Zachry Trencher (High speed wheel grinding) -Excellent promise of being adapted
	Dynamic Aspects of Flow Through The SOBI	1	С	I	Dawson (1907) -Residual current fluctuations were unrelated to local winds that were correlated with large scale meteorological disturbances
1963	1963 Oceanographic Study	-	С	I	-Current meter (Hydrowerkstatten) Depth: 13 & 50m -The report is a statistical report with little portent information
	Sedimentology Of The Narrowest Portion Of SOBI G. Drapeau	-	R	I	This is Document #10
1981	#56 Laboratory Test Results, Selected Soil Samples-SOBI Crossing Newfoundland Geosciences	-	R	I	Laboratory Test Results -Summary of Index Test data -Grain size distribution -Direct shear test results -Triaxial shear test results * No commentary just test results tabular/ graphical form
1981	#57SOBI Marine Borings and Surveys Contract SNC-Lavalin	-	0	I	This document contains information on how to prepare the tenders, tentative work schedule. *No technical information
1981	#58Report Of Client Representative 1981 SOBI Marine Surveys Start Nearshore Survey	-	R	I	*Information covered in report #59

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	1	0	I	Heron -170ft long built after WWII to lift submarine nets
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	2	0	I	<u>Vessel</u> -4x6000lbs anchors on 2000ft wire rope -Single 75 HP bow thrusters (<i>Not available for this job</i>) -A main propulsion generator was lost shortly after an engine room flooding while the ship was in Halifax en route to site
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	9	0	I	First site 74-B-D3 -Anchors begin to slide -Ship held relatively well -On the 11th attempt a decision was made to move ship to find thinner overburden -10" core recovered
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	9	0	I	Oct 7, 1974 Huron Positioned without trouble third Site 74-B-D11 -This ended after half a day with more lost gear and the whole program was terminated
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	9	с	I	The drilling vessel Heron had a least 2m play and the bending of the drill pipe, by all accounts in the currents encountered -Error 35-65m

					Page 91 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1981	#59 Memorandum Re Positions and Samples of SOBI Offshore Core Holes 1974 Geomarine c/o SNC-Lavalin	11 to 18	Ο	1	Jack Davis Notes -Sept 13 anchors dragging -Sept 14 One pipe joint bent permanently -Sept 15 Touched bottom again -Drill string slipped out of hole -penetrated bottom approx 2' but no recovery -Discovered loss of 3 collars inner and outter care barrels and diamond bit -Sept 16 Crown wire and anchor wire tangled failure to anchor -Sept 19 Found outter core and diamond bit missing -Sept 20 Drill string on bottom for start of 3rd attempt -8' penetration pulled inner core (no recovery) -Stopped drilling too rough (waiting , still in the hole) -Sept 21 Diamond bit found to be ruined -Sept 25 Poor anchorage ship drifted 3000ft -ninth attempt possibly bedrock -Pulled core barrel no recovery -Drill String jamming and continued all night -Ship moved approx 50' on her anchors -Sept 27 Union joint leaking spline coupling sheared, broke tong disassembling the strings return to Blanc Sablon -Oct 3 Broke Crown Wires -Oct 5 dragged anchors hull cracked -Oct 7 lost water pressure and weight indicator reading *There were a total of 19 attempts over 25 days and 4 successfull recoveries
1981	#60 Memorandum Re Positions and Samples of Strait Of Belle Isle Onshore Drill Holes Geomarine c/o SNC-Lavalin	-	0	Ι	*This report is trying to validate drill hole sites and the drilling program performed in 1981 (<i>No portent information in this report</i>)
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	4	R	С	<u>Atlas Ecosounder</u> -First found to have a poor plug that ultimately ripped off then, 210 kHz dual frequency was connected, the atlas quit entirely
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	-	0	I	<u>Klein Sidescan Sonar</u> - Developed a helix problem and would not print on one side -The most serious problem was bottom "crashes" the sidescan was put into the bottom at least 10 times during the survey and the fish was not lost
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	-	0	1	<u>Airgun</u> -Was operational and working well throughout the testing however, Nordco was the owner and didn't utilize it as much as was needed.

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 92 of 333 Description
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	7,8	0	Ι	Log (problems) -June 4 fish delayed to allow completion -June 6 Dirty plug from manufacturer -June 7 Fish crashed (operator attention) acoustic window was cracked and replaced -June 10 Power supply went down -June 12 Still major power drawdown after supply was replaced -June 13 Drawdown due to lack of continuity in the cable -June 14 Cracked slip rings were discovered -June 16 ASU flooded, flooded second time and blew preamp, EO plug found to be no good and the external hydrophone removed -June 19 Boomer plate leaked 3 times and improperly installed o-ring was found -June 22 Sheared screws, fish leads wet, slip rings dirty (Minor problem)
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	17	С	I	<u>Current Meters</u> - 3 Current meters were installed from June 2 to June 30 -Wave buoy appeared to work well but later in June went through long periods of poor data transmission or complete loss attributed to currents drawing the full mooring below the water.
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	24	I	I	HMCS Raleigh -Shipwreck Point Amour Potentially has explosives on board and should be avoided (5700475N, 509715E)
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	46	lc	I	Iceberg Scour -Plates (5-6) 10-20m wide path, snake like sinuous mark sweeping from side to side 59.5-60 rocking and meta- stable -Grounded at 59.2m (Pock Mark) -One suspects overturning and the sharp scour from 59-58 was the same berg
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	Plate 6	lc	V	Scour may show tidal lifting or overturning scour should be examined for depth
1981	#61 Report Of Client Representative SOBI Marine Survey 1981 Offshore Survey and Conclusions of Onshore Survey June 1981 Geomarine c/o SNC-Lavalin	72	lc	I	Big Rock documented a grounded berg off savage cove 30-40 ft high 84 ft draft
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	4	Ρ	I	Llunddulas Limestone (143 Mpa)
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	5	Р	I	Quartzite 134-222 Mpa (Rock to hard to drill)
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	6	Р	I	Granite 157.8 Mpa
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	8	Р	I	Basalt (Igneous Rock) 274 Mpa

-	11		1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 93 of 333 Description
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	16	Ρ	I	Limestone 108-178 Mpa 2m/min wear was slight
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	17	Ρ	Ι	Orthoquartzite 70-210 Mpa 1.8 m/min to 0.5 to 0.8 m/min Abrasive Grinding and Degradation a lot of wear
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	18	Ρ	Ι	Granite 68-188Mpa 1.4m/min overload 0.5m/min long duration Abrasive Grinding Bad wear (Not to the extent of Orthoquartzite)
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	18	Ρ	I	Sandstone 58-250Mpa 0.6m/min Wear Polishing Mainly fracture
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	19	Ρ	Ι	Basalt 166-308Mpa 0.6m/min Abrasive Degradation/ Fracture
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	obs	Ρ	Γ	The testing was performed in Land Quarry with sample rock used to be similar to what will be experienced in the SOBI this data should be superseded with current rock hardness's from testing in the SOBI and from borehole samples.
1980	#62A LCDC SOBI Crossing Preliminary Report Of The UK Rock Cutting Trials Land and Marine Engineering Ltd.	19	Ρ	Ι	The Cutter 2m Diameter drum 0.4m wide fitted with 114 heavy duty side pull lock pick holders. Trench 0.6m deep RTM I
1980	#62B LCDC SOBI Crossing Analysis Of The UK Rock Cutting Trials Land and Marine Engineering Ltd. On Behalf Westminster Land and Marine Pipelines Ltd. Vol 1, Vol 2 and Vol 8 (site photos)	-	Ρ	I	Vol 1 - 62A Preliminary report Vol 2 - Test Result Data Sheets Vol 8 - Site Photos
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levant Otdemir Colorado School Of Mines	1	R	С	Limestone Compressive Strength 70000psi Highest in there program was 62000psi
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	1	Ρ	С	-The trench proposed though SOBI presents unique engineering challenges. These exist no previous application of underwater trenching machines in cutting very hard rock such as SOBI rock *New machine must be developed
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	1	Ρ	I	Testing in linear rock cutting machine two columns and a cross beam on which the cutter holder frame is mounted
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	29	Ρ	I	Cutter Bits Conical, plow bit Conical (Bortunco Inc.) Plow Bit (Sandvik)
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	51	R	I	HB Limestone 49531 psi Avg, 61831 max

			1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 94 of 333 Description
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	52	R	I	HB Sandstone 25517 psi Avg, 30494 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	53	R	Ι	Bradore Sandstone 14031 psi Avg, 19862 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	54	R	I	Forteau Limestone 28815 psi Avg, 30083 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	55	R	I	Forteau Limestone 24593 psi Avg, 28708 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	56	R	I	HB Limestone 38920 psi Avg, 43608 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	57	R	I	Forteau Limestone 23339 psi Avg, 26470 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	58	R	I	HB Sandstone 27975 psi Avg, 31341 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	59	R	I	HB Sandstone 25859 psi Avg, 28325 max
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	60	R	I	HB Limestone 55313 psi Avg,
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	80	Ρ	I	Conical Pick 60 deg - 5 deg pick no 17 HB Limestone Dist (ft) 244-482 Length (in) 6.030 - 6.012 Weight (gr) 1282.5-1282.27
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	81	Р	I	Conical Pick 60 deg - 5 deg pick no 17 Forteau Limestone Dist (ft) 0-1223 Length (in) 6.055 - 6.020 Weight (gr) 1290-1281.5
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	82	Ρ	I	Conical Pick 60 deg - 5 deg pick no 17 HB sandstone Dist (ft) 0-487 Length (in) 6.075 - Pick Broke Weight (gr) 1287.5-1246.5

	1				Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 95 of 333 Description
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	83	Ρ	I	Conical Pick 60 deg - 5 deg pick no 17 HB sandstone Dist (ft) 0-260 Length (in) 6.075 - 5.950 Weight (gr) 1284.75-1268.80
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	128	Ρ	I	Conical bit force required 6900 lbs at a cut spacing 1.25", penetration 0.5"
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	129	Ρ	I	Disc Cutter requires 50% more thrust - It becomes evident that from a cutter drum torque point of view, a machine with disc roller type cutters would have lower torque and power requirements
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	138	Ρ	I	Plow bit by (Sandvik) Failed Not Feasible!
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	138	Ρ	I	Conical Bit (Bortunco) can do the job, cut with minimal wear
1982	#62 SOBI Laboratory Rock Cutting Pick Test Levent Otdemir Colorado School Of Mines	140	Ρ	I	Disc Cutting showed it can cut limestone (Superior wear characteristics)
1982	#63 Proposed SOBI Submarine Cable Installation Oceanographic Aspects R.G.Ingram	7	С	V	BIO 1980 current 15m 2-4 knots 50m 2-3 Knots <u>Current Observed (Max)</u> <u>North Side</u> 15m 5.2 knots 50m 3.8 knots <u>South Side</u> 15m 3.4 knots 50m 2.6 knots *Combining the maximum observed residual flow 1.6m/s and the largest tidal current 2.0 m/s would produce the 7.2 knot current at 15m and a max at 50 m of 5 knots
1982	#63 Proposed SOBI Submarine Cable Installation Oceanographic Aspects R.G.Ingram	17	С	U	SNC- No instrument placed at the narrowest section of the strait, depth in the section is also greater than that of the narrowest section therefore current for this area are likely lower then maximum.
1982	#63 Proposed SOBI Submarine Cable Installation Oceanographic Aspects R.G.Ingram	28	I	I	Max Wave 1981 Sept and Oct 5m
1982	#63 Proposed SOBI Submarine Cable Installation Oceanographic Aspects R.G.Ingram	39	lc	V	Scouring can occur up to depths of 140m anywhere in SOBI

-		r – –			
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 96 of 333 Description
1982	#63 Proposed SOBI Submarine Cable Installation Oceanographic Aspects R.G.Ingram	39	Ρ	С	Cables to be placed in trenches 1.5m deep
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	3-1	Р	I	Due to excessively high drawdown forces 1800 tons or more it is not feasible to clear the overburden by plowing along recommended route. -Plowing is abandoned
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	3-1	Ρ	I	Hydraulic Jetting or/and pumping (educator pumps) better choice
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	3-1	С	I	Nordco 1979 (bottom current 1 Knot)
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	3-2	Ρ	I	Recommended 7m wide, 4 m deep trench -Pump 95% of overburden + Plow 5 %
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-8	Ρ	I	<u>Pumped & Plowed</u> -Pumping 95% of overburden (Up to 3" size as specified) -Removing gravel and rocks by means of plowing
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-15	Ρ	I	<u>Hydrautic Dredging Analysis</u> -Pumping of submerged materials (Fine particles -6" rock in a water slurry) -Slurry flow is 30000 gpm 10% overburden
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-16	Ρ	I	From program and assumptions -2.5m deep, 7m wide -Volume/Unit Length 30m ³ /m -Rate= 6.25m ³ /min
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-23	Ρ	I	Plowing Analysis -R.J. Brown (Cohesive Soil) -Plow weight 100ton, 650 tons to excavate the ditch S.Hata Kyoto University Ditch is v-shaped with small width @ bottom: result 1950 tons
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-24	Р	I	<u>Hydraulic Jetting Analysis</u> Nozzle 1/8" to 7/16" 1000-2500 psig (various set ups)
1982	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	4-25	Ρ	I	<u>Sled Configuration</u> 7m long, 4m deep One pass sled is recommended because: -Position control needed for multiple passes is difficult if not impossible in the environment regardless of number of passes, the spoil piles must be deposited the same distance from the ditch centerline and finally a one pass ditcher should be faster therefore less expensive -160 ton can only be met by towing -Unmanned sled is recommended -2000gpm pumps, jet nozzles for creating ditch -Not self Propelled

		-	1		Page 97 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	-	Ρ	Ι	Recommended Ditcher -Water jets to break up overburden creating (slurry) -Water educators to transport the spoil -Trailing Plow to Punch aside larger rocks
	#64 Report On Seabottom Overburden Removal For SOBI Santa Fe Technical Services Co.	-	Ρ	I	Barge Mooring Analysis Capable Requirements 1. wind & current (47000 lb) (3 knots) = 211000 (106 tons) 2. Sled Towing force (300000lb) (150tons)
1982	#65 Rock and Soil Testing SOBI Golder Associates	-	R	I	Sample Comp Strength (Mpa) 17 130 21 138 28 145 30 215 34 238 203 176 206A 248 39 244
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	1-7	I	С	Waves up to 3m with swell currents
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-17	R	С	HB Dolomitic Limestone 394MPa HB Orthoquartzite Sandstone 238 Mpa Forteau Limestone 257 Mpa Bradore Sandstone 150 Mpa
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	2-18	R	С	One extreme sample 480 Mpa
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	3-2	I	Ι	Table of wind speeds may, June, July, aug, sept, oct for 1971,81,
1982	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	-	С	V	Current Data again max was BIO 4.9 knots recorded BIO
1982	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	Table 4.4	С	V	Gumbel analysis extreme current predictions and Weibull Model as will max prediction 4.6 Knots 5yr return period.
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	5-5	lc	V	Max Draft increase of iceberg is 13.3m (70m draft) of tabular/drydock *Same iceberg information as in report #68
1982	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	Section A	-	-	Section A uses mostly same information as report 68

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 98 of 333

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
	#66 SOBI HVdc Transmission Submarine Cable Scheme SNC-Lavalin	7-2	Ρ	I	Dredging/ Jetting Companies That Need More Development But May be Feasible 1. Volker Stevin-Aveco 2. Zanen Verstoep 3. Land and Marine 4. Sante Fe 5. Verreault Navigation 6. Brown and Root *Some information about cutters and trenches but no proven technologies
1982	#67 Analysis Of The Available Information On The Overburden SOBI Crossing Jean-Y Changnon	26	С	V	Max measured bottom current 2.75 knots
	#67 Analysis Of The Available Information On The Overburden SOBI Crossing Jean-Y Changnon	27	С	V	Nordco Says 4 knots max measured 3.15 knots
1982	#67 Analysis Of The Available Information On The Overburden SOBI Crossing Jean-Y Changnon	27	С	V	RG Ingram 7 knots upper 3.8 bottom
	#67 Analysis Of The Available Information On The Overburden SOBI Crossing Jean-Y Changnon	-	R	I	*This report contains good overburden but is superseded Overburden 0-4m Avg 1.5m Lab side pockets up to 9m
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	9-6	R	I	Rock TypeComp StrengthSilica Content(%)HB Dolomitic289394518.7HB Orthoquartzite1442387795Forteau Limestone16725756.4Bradore Sandstone841507791.5
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	-	0	I	Good meteorological Data However it is the same data from report #69 in less detail

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 99 of 333

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	12-13	lc	I	Type Draft Rollover inc Instantaneous Inc Tilting Inc Tabular/Drydock 40 3 10 - 50 1.3 11.3 - 60 - 12.6 - 70 - 13.3 - Wedge/Pyramid 40 - - 7.2 50 - - 8 60 - 8.7 70 - - 9.1 - - 9.1
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	12-13	lc	I	*no icebergs analyzed in this study can increase draft more then 3m
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	12-19	lc	V	Draft % Icebergs With Sufficient Energy To Cross Sill 75-80 50 80-85 20 85-90 5 *Rollover due to calving is not considered
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	12-19	lc	V	Pcc=Px X Pr X Pp Probable Iceberg Distribution at The Cable Crossing Px- Probability of crossing sill Pr- Probability of iceberg reaching the crossing Pp- Probable population distribution Sp=Pcc X Ps *From static stability Kollemeyers report is fine but fails to take into account the mechanism that would cause iceberg rollover, & the amount of energy necessary for rollover

-					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 100 of 333 Description
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	13-7	Са	I	Cable Amour -Single wire amour (interlocking steel tape) -Double Wire (counter helical amour) Depth > several 100m double wire amour is required to obtain a cable with sufficient tensile strength. This is not the case for the SOBI, so single wire amour is acceptable from pulling tension point of view Single Wire kinks easier only avoided by carefully controlled laying techniques which ensure that the cable tension is never released
	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	13-8	Ca	I	Double wire (counter helical amour) can not be coiled because the coiling process imparts one twist to the cable for each turn of the cable on the coil and the cable cant be twisted and therefore must be wound and unwound from a rotating turntable.
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	14-5	Ca	С	<u>Combined Risk Analysis</u> Fault rate SOBI oil filled cable 0.000007 faults/cable year however to small this is too small so using multiple cables 0.08 faults/cable year External=0.005 if trench fails to protect the cable
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	14-6	Ca	V	Repair Time Recovery/Repair/Relay 3 months Repair Window (weather) 6 months Waiting time for Repair Vessel 6 Months
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	14-6,7	Ca	С	Reliability Analysis Internal Cable Failure 0.018 fault/cable year Probability of external damage 0.005 faults/ cable year Probability of consequential damage 0.10 (2 cables/trench) Probability Of Total Cable Outage 4 cables/ 2 trenches 0.000513 3 cables/3 trenches 0.00055 Probability Of Total Outage 4Cables/2trenches 0.0023 3 Cables/3trenches 0.00184

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 101 of 333

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1982	#68 SOBI Crossing HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol I Engineering Report-Cost Estimate and Project Schedule Part A (Not Included) Part B Summary description of 1981 results and related engineering studies	14A-7	Са	I	Vancouver 138kV AC Crossing 9 out of 118 have occurred for oil filled HVdc cable installed in an ideal rock trench -Therefore cable fault rate of 0.034 faults/100km/year -To obtain a fault rate with 95% confidence level, the fault rate is 0.06 fault/100km/year -To take into account conditions of SOBI rate is 0.1 faults/100km/year
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	2-2	lc	V	Iceberg Scours in water >70m 1979 Kenting report (2 scours in 83m water depth)
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	2-3	R	I	Worst fault is 7.2km NL side
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	3-2	I	I	<u>Wind Speed</u> Point Amour Max 96.8 km/hr
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	3-3	I	I	<u>Wind Speed</u> Savage Point Max 107.6 km/hr
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	3-3	I	I	<u>Wind Speed</u> Point Amour Lighthouse Max 111 km/hr
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	3-3	I	I	<u>Wind Speed</u> Rocky Giant 74 km/hr average
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	3-16	I	V	<u>Swells</u> 1.5m, mean 1m July 0.6m August
1982	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	4-2	С	V	Current Data Dawson 1906 3.45 knots Huntsman 1954 2.2 Knots Captain F.A. Roughton 1964 3.4 knots Fraquharson & Bailey 1966 5.07 knots (13m) Nordco 2.1 knots seabed, 3.8 knots 12m SNC 2.18 knots seabed, 2.72 knots BIO 1980 4.85 knots 15m, 3.88 knots 50m

				1	Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 102 of 333 Description
	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	5-7	lc	1	Iceberg Reports 1. Preece 1964 2. Snow 1968 3. Bridges 1968 4. Drapeau 1968 5. Mun 1972-73 6. NSRF 1973-74 7. Shawmont NL 1974 *60-90 Icebergs enter the Strait 17% emerging out the western end
1000	#69 SOBI Crossing -HVdc Transmission Submarine Power Cable Scheme SNC-Lavalin Vol II - 1981 Field Program	5-7	lc	I	YearIcebergs659466109671879380388186-Good data on groundings and distribution and frequency of bergs crossing route
1982	#70 SOBI Crossing HVdc Transmission Submarine Cable Scheme SNC-Lavalin Vol III - Environmental Field data Observations	-	I	I	A- Meteorological Data B-Oceanographic Data C- Wave Data
1982	#71 SOBI Transmission Crossing Submarine Cable Scheme SNC-Lavalin Volume V-Geology and Geotechnical Field Observations	-	R	I	E-Overburden & Borehole Logs F-Photographs and Marine Borehole Samples G-Bottom photographs at locations of Marine Borings *No Commentary just data sheets *Subsea Photos are useless (black and white) No validity
1982	#72 Evaluation Of Geophysical Surveys Conducted Across The SOBI Between 1975 and 1981 Paul Laroche	-	R	I	Reports Analyzed: Geoterrex CGG for Harison Bradford Associates 1975 Kenting 1979 SNC-Lavalin 1979 Bever Dredging 1981
1982	#72 Evaluation Of Geophysical Surveys Conducted Across The SOBI Between 1975 and 1981 Paul Laroche	8	R	U	<u>Geoterrex/CGG</u> -Some poorly coherent reflectors can be seen in place. However, there is no correlation what so ever possible between them because of the lack of continuity and the very high noise that obliterates the sections therefore it is impossible to interpret any continuous or faulted seismic reflector across SOBI *Basically Geoterrex 1975 survey did not achieve its purpose Cambrian contact remains unidentified
1982	#72 Evaluation Of Geophysical Surveys Conducted Across The SOBI Between 1975 and 1981 Paul Laroche	14 to 16	R	U	<u>Kenting</u> -Kenting noted they had poor data geophysical investigations by kenting are considered to be fair to good but the results obtained do no give sufficiently accurate and detailed results to determine the real thickness of overburden and the real configuration of the bedrock topography in the SOBI

r					Page 103 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1982	#72 Evaluation Of Geophysical Surveys Conducted Across The SOBI Between 1975 and 1981 Paul Laroche	21	R	I	Bever Dredging -The Bever report is much the same as Kenting with some new information -The Bever Dredging company Ltd. Report gives a more detailed interpretation of the bedrock nature under the sea
	#73 Geology Of The SOBI Area Geological Survey Of Canada	-	R	I	Northwestern Insular NL, Southern Labrador Adjacent Quebec -Geologic Survey Of Canada
1982	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	2-3	lc	V	(79-80) 21 icebergs tracked 6 grounded 15-60m of water (80-81) 31 Icebergs tracked 7 grounded 15-60m of water (2 in 60m) (81-) 75 Icebergs Tracked 15 grounded 15-60m (4 in 60m)
1092	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	2-5	С	V	<u>Currents</u> Max Surface 4.5 Knots narrow point (Point Amour & Yankee Point) Max Bottom Current 3.5 Knots
1092	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	5-1	0	I	Shore Ice -1975 C-Core installed a test cable at the shoreline, laid directly on the seabed, anchored to rock on shore. Cable was completely exposed. Ice froze around the cable and moved it offshore *It was recovered out in the Bay.
1082	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	5-3	Ρ	I	Fishing Gear -Trawl Board on sandy bottom 85kN lateral compressive load -Cable hooked by trawl board bending stress and tensile load 400kN
1982	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	5-4	lc	V	<u>Iceberg Scour</u> -Previous Iceberg studies produced a conclusion that icebergs could scour at depths greater than the sill and also the probability of iceberg scour at depths > 85m was effectively 0. this led to recommendation by SNC to rock trench up to 85m
1982	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	7-1	Ρ	I	Burial Techniques 1. Pre-Trenching 2. Simultaneous Burial 3. Post Burial Dredging -Bucketwheel but no control of trench shape in high wave action -Not used for soft overburden generally Excavation Plowing Trenching (Drill & Blast proven)
1982	#74 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 1	9-10	I	С	Method of install for cables: -Plowing method
1004	#75 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 2	Appendi ces	R	I	-Seabed Photo's -Grain Size Distribution Analysis -Engineering Profiles

			1		Page 104 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1984	#76 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 3	Appendi ces	R	I	-Offshore Track Chart L'anse Au Clair -Offshore Track Chart St. Barbe -Nearshore Track Chart L'anse Au Clair -Nearshore Track Chart Forteau Bay -Nearshore Track Chart St. Barbe Bay -Offshore Bathymetry L'anse Au Clair
1984	#77 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 4	Appendi ces	R	I	-Offshore Bathymetry St. Barbe -Nearshore Bathymetry L'anse Au Clair -Nearshore Bathymetry Forteau -Nearshore Bathymetry St. Barbe -Nearshore Isopach L'anse Au Clair -Nearshore Isopach Forteau Bay -Nearshore Isopach St. Barbe
1984	#78 Final Report On SOBI Submarine Cable 83' Program Shawmont Vol 5	Appendi ces	R	I	-Composite Offshore Bathymetry L'anse Au Clair -Composite Offshore Bathymetry St. Barbe Bay
1984	#79 SOBI-HVdc Transmission- Submarine Cable Scheme '84 program vol VI	-	R	I	-Area Geology -Route Selection *Both superseded by current data
1984	#80 SOBI Crossing HVdc Transmission- Submarine Cable Scheme '84 Program ITM Vol VII	Арр В	Ρ	I	Plow Survey Program
1984	#80 SOBI Crossing HVdc Transmission- Submarine Cable Scheme '84 Program ITM Vol VII	3-3	Ρ	I	Plow weight 5 tones in air 4.3 tons in water
1984	#80 SOBI Crossing HVdc Transmission- Submarine Cable Scheme '84 Program ITM Vol VII	Section 5	Ρ	I	Plow was sticking at intervals due to rocky bottom -Plow jamming occasionally, with which tension cont paying out at 40T setting -Plow jammed, plowing stopped to break out the plow
1984	#80 SOBI Crossing HVdc Transmission- Submarine Cable Scheme '84 Program ITM Vol VII	9-40	Ρ	I	-An appropriate plow will have no difficulty in ploughing at least 600mm deep along the whole of any of the three routes surveyed.
1984	#80 SOBI Crossing HVdc Transmission- Submarine Cable Scheme '84 Program ITM Vol VII	10-17	Ρ	I	 Wear 1. Replacement both spigots for the points 2. Replacement of both paints (welded in place and pinned) 3. Rebuilding the edge of the ramp with square section steel bar 4. Steel plate welded on top of ramp face 5. Hard facing to most wearing edges and points 6. 1" cut off points
1984	#81 SOBI Power Cable Crossing- Review of Data March 1984 Geonautics Ltd.	-	-	-	

		1	1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 105 of 333 Description
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	-	I	I	Appendices C,D,E Landing Site Investigations F Horizontal Positioning G Fishing Activities Study
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	7	Ρ	U	<u>App c</u> -L'Anse-Au-Clair will make excellent cable landing site 2-3m burial depth 20m *Recommend -Short length of trench be excavated near shore during the design stage to ensure the excavation will remain open long enough to allow for the install
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	2	R	I	<u>App d</u> Test on cemented sand 24-35 Mpa 3.4-31Mpa
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	15,16	Ρ	V	App g Fishing Activities -Approx 95% of all damage caused to communication cables is attributed to fishing activities -Bottom Trawling has posed the main threat -December 1984 meeting of the international cable committee reported 100% success rate for all buried cables in terms of totally eliminating damage caused by fishing activities -However, sand waves have been a problem in some areas and have caused sections of buried cables to become exposed
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	16	Р	I	<u>Issue</u> Cable Denmark-Sweden equipped with heavy armoring to withstand impacts of trawl gear 1968-73 considerable damage was caused to the cable by intensive trawling activities
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	17	Ρ	I	Issue -PEI-NB 100MW submarine electric cable across Northumberland StraitThis connection became known as the longest buried oil-filled cable 21.5km - 2 km could not be buried due to rock conditions (concrete mattresses) -Recent examination of the cable showed interference from fishing gear -In some sandy areas the cable has become exposed due to tide and current conditions
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	23	Ρ	V	Impact from fishing gear 15-35 milliseconds
1984	#82 SOBI HVdc Transmission Submarine Cable Scheme '84 Program Marenco Engineering Ltd. Vol VIII	28	Ρ	v	Fishing Gear Penetrate seabed 5-8 cm, 14cm in sand
1984	#83 1984 Subsea Plow Survey Program - Preliminary Results HW Green	2	Ρ	I	ITM Test Plow -5 ton, 265cm long, 84cm high, 19cm wide
1984	#83 1984 Subsea Plow Survey Program - Preliminary Results HW Green	3	Р	I	Test plow speed Avg 1km/hr, max speed 2.7km/hr

		T			Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1984	#83 1984 Subsea Plow Survey Program - Preliminary Results HW Green	3	R	I	In Areas of bedrock exposure on all 3 routes plow progress was temporarily halted when plow became stuck
1984	#83 1984 Subsea Plow Survey Program - Preliminary Results HW Green	5	Ρ	I	-All three routes are plowable
1984	#83 1984 Subsea Plow Survey Program - Preliminary Results HW Green	section 4	Ρ	С	<u>Shawmont Portion</u> <u>Problems:</u> -Plow to hang up and then shoot ahead rapidly as the tension in the tow wire increased to a sufficient level for it to break free -Tendency for the plow to ride in and out of the material very irregularly as it passes over boulders or ridges of rock. this has implications when laying the cable since the bending radius will cause it to ride the ridges and span the depressions thereby minimizing penetration and possibly causing point loads on the cable amour
1987	#84A Final Report SOBI Iceberg Tracking Program April 1987-Oct 1987 Fenco NFLD.	3-1	lc	I	34 bergs 23 bergs made it inside area of interest
1987	#84A Final Report SOBI Iceberg Tracking Program April 1987-Oct 1987 Fenco NFLD.	3-3	lc	V	Table Estimated Iceberg Parameter Information (number, type, draft grounding)
1987	#84A Final Report SOBI Iceberg Tracking Program April 1987-Oct 1987 Fenco NFLD.	3-11	lc	V	Berg 15 5.5 nautical miles off Point Amour 70-80m water 3 hours stationary (Potential grounding)
1987	#84A Final Report SOBI Iceberg Tracking Program April 1987-Oct 1987 Fenco NFLD.	3-11	lc	V	17 of 34 were noted to have grounded in 24 grounding events
1985	#84 SOBI Pisces IV Dives August 1985 Orca Marine Geological Consult	-	Ρ	I	Manned submersible observations of submarine cable test trench in SOBI *Report to examine trench in a submarine not much portent information
1988	#85 Assessment Of The Practicality Of Installing A Bedrock Adit, Rock Trench or Overburden Trench For HVdc Cable Protection Beneath the SOBI C. Woodworth Lynas et al (C-Core)	18	Ρ	с	Rock Trenching -The rock cutting characteristics of lithologies beneath the strait have been tested all rock types were found to be cuttable and preliminary designs for a rock trencher have been achieved
1988	#85 Assessment Of The Practicality Of Installing A Bedrock Adit, Rock Trench or Overburden Trench For HVdc Cable Protection Beneath the SOBI C. Woodworth Lynas et al (C-Core)	24	Ca	I	-Northumberland Strait 2x100MW cables installed by (Maritime Electric) 1977 burial depth of 2m -No scours>0.3m
2004	#88 Fixed Link Between Labrador and Newfoundland Pre Feasibility Study (Final Report) Hatch Mott MacDonald	10	lc	I	-By late 1979 a risk associated with iceberg scour problems were conducted and concluded that a cable crossing (subsea) could be achieved with an appropriate probability of scour
2004	#88 Fixed Link Between Labrador and Newfoundland Pre Feasibility Study (Final Report) Hatch Mott MacDonald	20	С	V	Current 15m (7.2 knots) 50m (5 knots) *No conclusive results

			Route,		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 107 of 333 Description
2004	#88 Fixed Link Between Labrador and Newfoundland Pre Feasibility Study (Final Report) Hatch Mott MacDonald	20	I	V	Waves 1/100 year 10m 1m>40% of time 2m<2.5% of time 3m< 100% of time
2004	#88 Fixed Link Between Labrador and Newfoundland Pre Feasibility Study (Final Report) Hatch Mott MacDonald	21	lc		Icebergs 0.5 events /100 icebergs (possibility of scouring route) water depth >75m 0.1/100 depth >85m
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	1	R	I	Route chosen to use sediment deep enough to avoid iceberg scour
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	1	R	I	840,000 km of geophysical survey lines shot
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	1	R	I	Deep water/Nearshore data: - SBP Huntec - Multibeam bathy - side scan data
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	I	1. Seafloor generally gravelly with boulder lay deposit w/sand ribbons superimposed
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	I	2. >95m, numerous boulders and cobble rich berms
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	I	3. Thick sand sediments, 3-16 m thick between 10 and 58 m, Lab side.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	I	4. 95m and in on NL side, mainly bedrock and sediment <1m thick.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	I	- sequence of step-like bedrock scarps 1-2 m in elevation and exceptionally 6-7 m.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R		5. NNE-SSW bedrock channel dominates western portion of route between 82 and 106 m. 5.75 km long, 20-30 m deep w/3-10m of sediment.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	3	R	V	6. Modern iceberg scours <0.5 m observed between 50-58 m on NL side, 48-77 m on Forteau side, <0.75 m deep.

			1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 108 of 333 Description
0000	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	4	R	I	Survey routes designed on basis of desktop study
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	4	R	I	- SBP to map to 5 m depth or bedrock - vertical resolution 0.3 m, horizontal @ 2-5 m
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	С	Require up to 5 cables
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	С	15 cm diameter
0000	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	I	Armored against tensile strain and bottom currents or soil creep
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	С	Minimum distance between cables with regard to mutual termic influence is 5 m
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ρ	С	Trenching or burial requires separation of at least 10 m. Should in practice be greater.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	С	Sparing should be water depth + 25%, e.g., at 100 m, 4 cables should be 375 m spacing total.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	5	Ca	U	Thermal properties of substrate or embedding soil
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	lc	I	Below 100 m, with transition zone starting at 80 m, seafloor is characterized by numerous intersecting berg scours. Above this depth, prominent features are absent suggestion burial or erased.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	lc	С	Scours below 100 m are interpreted as relict and several thousand years old.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	lc		Present day water depth shoal of about 75 m between Penware Bay and Green Island Brook prevents icebergs of drafts >75 m from entering the strait. Modern iceberg scours considerably smaller and occur less than 77 m.

Year	Report Reference	Page	Route, Protection, Icberg, Current,	Actions: pose Question, Challenge,	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 109 of 333 Description
		_	Cable, Installation, Other	Validate, Unknown, key Info	
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	lc	С	Features previously thought to be ribbed moraines occur in zone of relict iceberg scours, and are in fact bouldery berms
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	R	I	Figure 2.2 - prominent physiographic seafloor features
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	7	R	I	Bathy data connected to LLWLT
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	14	R	I	Survey data presented in 10 horizontal alignment sheets
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	16	Р	I	Max plough penetration in 1984 was 80 cm
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	18	R	I	Lab. Side tidal zone slopes at 3-8 deg.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	18	R	I	Bedrock is Bradore formation sandstone on Lab. Side
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	18	R	I	Eastern route: sand 16 m deep at 50 m depth between kp 0.8 and 0.9.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	21	lc	V	WD 110, eastern route, scours with 2 m relief and 50-100 m wide, .5-2km long.
2002	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	28	R	I	0.5-1.0 m high vertical steps in bedrock at KP 24-27. Stepped bedrock.
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	41	R		Glacial marine ridges are seen clearly on the isopach map, with discrete sediment thickening. 1. KP 25.3-25.5 2. KP 25.9-26 3. KP 26.7 4. KP 27
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	41	lc	I	200 m east of route at KP 20, between 67 and 69 m water depth, fresh iceberg scour, 160 m long, 2-7 m wide, depth about 25 cm.

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 110 of 333 Description
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	46	lc	I	Scours at 48-77 m water depth near Forteau
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	47	R	I	Fig. 4.18 - side scan sonar mosaic
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	48	lc	V	Table 4.1 - Fresh iceberg scours
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	48	R	I	17.5 km shortest route
2000	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	51	lc	V	NL coast < 69 m (scours???)
2008	Fugro Jacques Geosurveys Subsea Cable Route Survey DC1131 Volume 1 - Survey Results	51	R	I	Sonar Contacts
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	2-3	Ρ	С	Iceberg density is 20 times higher than in the Jeanne d'Arc Basin
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	2-8	Ρ	I	1979-1987, mean iceberg speed of 40 cm/s
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	3-4	Ρ	I	table 3-1 - Variation in scour and pit depth w/water depth
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	3-6	Ρ	U	Data for < 90 m was extrapolated
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	3-13	Ρ	I	Scours filled in so quickly that they weren't detectable a year after their formation. Recommend to collect scour data immediately after ice season.
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	5-14	Ρ	I	Deepest scour in Beaufort Sea was 3.6 m.
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	5-23	Ρ	I	Table 5-7, 5-25 - Pack ice and soil cover
2007	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	2-1	Ρ	U	 field data unavailable insufficient mapping of the area rapid infilling of scour features data for iceberg trajectory is unknown

Muskrat Falls Project - CE-44 Rev. 2 (Public)

	I				Page 111 of 333
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
	C-CORE Ice scour risk in the Strait of Belle Isle and Cabot Strait	3-1	Р	U	Currently there is no scour data
	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	I	Р	Ι	Required cover depths of 3-5.5 m for 100 and 1000 year returns, respectively
2004	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	1-1	lc	I	Largest number of bergs between May and June
2004	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	-	lc	V	An iceberg reaches the Cabot strait in 1980 (??)
	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	-	lc	V	496 bergs were recorded by Belle Isle lighthouse keeper in 1858.
2004	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	-	lc	С	0.5 events for every 100 where 85>WD>75 m 0.1 events for every 100 WD>85
	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	-	Р	V	Previous studies aimed to beach and bury to 85 m
2004	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	2-1	lc	I	No field data available for SOBI
	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	-	lc	I	Data required for grounding model is available
2004	C-CORE Iceberg scour risk in the SOBI Prepared for SGE Acres	2-5	lc	С	As opposed to C-CORE 2007, iceberg density is stated as 40x the Jeanne d'Arc region. [Reasoning was more ice charts analyzed].
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	1	R	I	Bedrock is sandstone, limestone, dolomite w/shale.
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	-	Ρ	I	Plough: 0-80 cm penetration
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	2	Ρ	I	Directional drilling is an option

No. au	Durad Defenses	Dava	Route, Protection, Icberg, Current,	Actions: pose Question,	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 112 of 333
Year	Report Reference	Page	Cable, Installation, Other	Challenge, Validate, Unknown, key Info	Description
	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	-	R	I	Recommended a route specific oceanographic monitoring program
	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	4	I	С	Minimum distance between cables with regard to mutual termic influence is 5 m
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	-	Ρ	С	Trenching and burial requires spacing of 10 m.
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	-	Ca	U	Cables have dia. Of 30 cm
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	5	Ca	С	WD + 25% for spacing
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	10	R	Ι	Accurate mapping of bedrock units beneath the seafloor may become important if directional drilling of bedrock micro tunnels is determined to be a viable option
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	14	R	I	Moraines are typically found in water depths greater than 85 m.
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	20	R	U	Boulders under gravel lag surface
2008	Fugro Jacques Geosurveys Proposed Subsea HVDC cable route - SOBI Desktop Compilation Desk Study DC1132	72	R	I	Yankee point panding details = bedrock steps!
	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	3	0	I	Daily average temps during summer are 12 deg. C

Veer	Report Reference	Daga	Route, Protection, Icberg, Current,	Actions: pose Question, Challenge,	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 113 of 333
Year	Report Reference	Page	Cable, Installation, Other	Validate, Unknown, key Info	Description
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	4	lc	Ι	Sea Ice begins to dissipate by the end of March
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	-	0	Ι	There is a lot of good climate data
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	15	I	Ι	April to June - Northeast & SW winds July-Dec - SW to W
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	17	0	I	Tidal energies flow in a counter clockwise fashion around the gulf increasing in height from 0.6 m at the Magdalen Islands to nearly 5 m at Quebec city.
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	19	Ο	I	Avg. summer temps are 10-11 deg C - below 60 m, -0.4 to 3.5 deg C - winter, -1.8 to 2.73 deg. C
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	22	I	V	Waves: 7 m @ 0.001% of the time, 0-0.5 @ 54%, 2-2.5 @ 2% Hs exceeded 2 m 8% of the time 7.3 m was maximum recorded
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	24	I	I	Wave data
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	35	С	Ι	Summary of max. current speeds
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	38	С	Ι	BIO current measurements
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	41	Ι	Ι	Tides - 2 highs and lows every 24-25 hours - mean small tide is 0.44, max 1 m - mean large tide is 1.6 m, max 2.2 m
2007	AMEC Physical Environmental Description for the Cable Crossing of the SOBI	-	I	Ι	Appendices: climate, wave, current data
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	1	0	Ι	No primary sewage treatment in study area communities
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	0	I	fish disposal sites at L'Anse au Loup and Red Bay
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	R	U	Ordinances remaining at Raleigh site?
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	3	I	I	40 shipwrecks in area, with 1 arch. Important (Raleigh)
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	R	U	Historical resource assessments of cable landing sites may be required.
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	R		100 m exclusion zones recommended
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	R	U	PAO may require video

		1	1		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 114 of 333 Description
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	4	0	Ι	Several small craft harbors
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	Р	I	Scallop dredging at 45-55 m
	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	8	Р	Ι	Shrimps > 150-350 m (more fishing info can be found here)
2008	Jacques Whitford for FJG Strait of Belle Isle constraint Mapping	-	0	Ι	Appendix E: Earthquake Magnitude
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	I	Р	I	Risk analysis indicates deep cover depths of > 4 m
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	vi	lc	V	Ice scour risk is low for WD > 250 m.
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	2-16	lc	V	Iceberg scour formulae
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	2-25	lc	V	Table 2-7 Unfactored iceberg design loads
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	2-31	Ρ	U	Trawler scour depths
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	2-31	Ρ	I	DNV publications 2001, 2006 and HSE 1999 on trawling details
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	2-35	R	U	Sedimentation rates
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-1	R	U	Soil properties
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-3	R	U	Subgouge deformation extents
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-4	R	U	Frost heave risks

					Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 115 of 333 Description
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-8	0	I	Limit state and probabilistic design, stress vs. strain, upper bound design approach
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-16	Ρ	I	HDD - a series of pulls?
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-17	Ρ	U	Hybrid HDD technology
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-44	Ρ	I	TTD - largest trench depth calculations
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-48	Ρ	I	Table 3-9, pipeline plough companies
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-52	Ρ	I	Table 3-10 - Jet trenchers and manufacturers
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-53	Ρ	I	Cutting trenchers - buoyancy tanks
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-54	Ρ	Q	Technip TM09
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	3-57	Ρ	I	Cutter trenchers
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	5-61	Ca	U	Cable stability requirements
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	5-67	Ρ	I	Self pipeline burial - interesting technology, not applicable to SOBI
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	5-75	R	I	Thaw and consolidation settlement

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 116 of 333 Description
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	5-97	lc	U	Ice management for vessels and laying operations
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	6-4	0	I	Pack ice up to 2 m thick, ridges up to 7.5 m
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	-	lc	Q	Ice classification of construction vessels?
2007	C-CORE Screening study of production options for Labrador Gas V1 of2	7-19	R	U	Refined subgouge model
2004	Hatch Fixed link between Labrador and Newfoundland - Pre-feasibility Study - Final Report	20	С	V	Ingram, 1982 - 15 m WD, 7.2 knots, 50 m WD, 5 knots [SUGGESTED]
2004	Hatch Fixed link between Labrador and Newfoundland - Pre-feasibility Study - Final Report	37	Ca	I	Churchill Falls has 33, 270 kV low pressure oil-filled cables.
2004	Hatch Fixed link between Labrador and Newfoundland - Pre-feasibility Study - Final Report	-	Ca	V	Fire prevention systems required at feeder stations with oil filled cables?
2004	Hatch Fixed link between Labrador and Newfoundland - Pre-feasibility Study - Final Report	-	Ca	С	OD for CU of 100 mm
1975	Sob Pre-construction photos 1974-1975	-	R	I	Photo 100: Land approach photo showing sandy, gentle sloping landing point
1975	Sob Pre-construction photos 1974-1975	-	0	I	Photo 107: Aerial view of shaft site
1975	SOBI Misc. Reports	121	С		Cook strait project - 4.5 knots water speed
1975	SOBI Misc. Reports	-	Ca		Some good cable project info from that era (BC, Cook Strait)
1975	Support considerations for Newfoundland and Labrador Shafts	-	0	I	UCS: Med-High: 6000-25000 psi, Very High: > 25000 psi
1975	Report on Site investigations at Yankee Point	11	R	I	Frost penetration up to 9 feet
1975	Report on Site investigations at Yankee Point	-	R	I	Provides some soil condition info
1975	Report on soils investigation at Labrador Shaft Site	7	R	I	Bearing capacity of soils
1975	Report on soils investigation at Labrador Shaft Site	-	R	I	Depth of frost penetration, 5 feet
1975	Report on Geological Mapping Region for SOBI Crossing	-	R	I	RPO: Length description of rock outcrops and formations on either side of the strait.

-		1			Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 117 of 333 Description
1976	Offshore Seismic Survey	8	R	I	Reasons for bad recording in the survey lines was probably due to very strong winds which caused strong lateral motion of the vessel.
	Report on Offshore Drilling and Coring Program SOBI	-	0	С	"It is currently our opinion that probably no drill ship or rig exists with equipment to handle all the conditions that can prevail in the Strait."
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	С	Drill ship used was not ideal.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	С	Another company proposed a larger dia. Drill string less prone to bending. Proposal was not pursued.
	Report on Offshore Drilling and Coring Program SOBI	-	0	С	Geocon stated that standard drilling equipment could not handle the conditions. Exploration company was cheaper, so they were selected. The ultimate decision was based on cost and cost alone.
1976	Report on Offshore Drilling and Coring Program SOBI	-	С	С	Current reverses every 6 hours.
1976	Report on Offshore Drilling and Coring Program SOBI	-	С	С	Tidal flow on bottom can reverse direction as much as 3 hours earlier. Surface current up to 5 knots.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	С	Used local fishing vessels to handle ship's anchors.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	С	Built after WWII for handling sub nets. 170 feet long.
1976	Report on Offshore Drilling and Coring Program SOBI	27	0	Ι	E/R flooded en route to SOBI
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	Ι	STBD main generator filled
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	Ι	Power at half-capacity during drilling
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	Ι	Bow thrusters were down and couldn't be used at any time.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	I	No reserve power for maneuvering.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	Ι	Lost drill bit and bottom equipment three times.
1976	Report on Offshore Drilling and Coring Program SOBI	28	0	I	So much vibration experienced on drill string, it unscrewed.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	Ι	Lost drill bit under good weather and good conditions.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	I	Lost bottom end of string when 4-5" pipe failed
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	I	Drill shaft failed.
1976	Report on Offshore Drilling and Coring Program SOBI	-	R	I	Damaged tool while trying to penetrate the bottom.
1976	Report on Offshore Drilling and Coring Program SOBI	-	0	I	Tongs failed that were used to separate string segments.
1976	Report on Offshore Drilling and Coring Program SOBI	29	0	I	Bent drill string
1976	Report on Offshore Drilling and Coring Program SOBI	30	I	I	Vortex issues with string
1976	Report on Offshore Drilling and Coring Program SOBI	30	0	I	Anchors slipped

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 118 of 333 Description
1976	Report on Offshore Drilling and Coring Program SOBI	32	R	I	Drill bit severely damaged due to drilling in ground.
1976	Report on Offshore Drilling and Coring Program SOBI	35	0	I	The hull cracked open on the ship due to wave action.
1976	Report on Offshore Drilling and Coring Program SOBI	39	С	I	Geocon had proposed to use drill string tensioner that works in high currents and casing for entrance hole.
1976	Report on Offshore Drilling and Coring Program SOBI	40	0	I	Drill string tensioners had been recommended
1976	Report on Offshore Drilling and Coring Program SOBI	42	0	I	Drilling program a complete failure. Scheduling of the 1974 program didn't allow for proper preparation.
1976	Geological and Geotechnical Work Harrison Bradford	-	R	С	"the greatest hazard exists for cables located in depths less than 35 fathoms, although some minor hazards exist at depths greater than 35 fathoms."
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	-	Ca	С	"Laying cables has been considered impractical"
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	-	С		Currents: 0.5 knots into strait (Lab. Current) 0.6 knots out (Gulf Water)
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	-	С	I	Current speeds up to 3 knots.
1977	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	8	0	I	Late July, early Sept. temps: < 0 deg C for main body of water > 25 m, 10.3 deg C < 100 m, -1.6 deg C
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	10	R	I	Center Bank' shoal as shallow as 24 fathoms
1977	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	24	Ο	I	Pack Ice Arrival 15th to 25th of December
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	24	lc	I	Ice seen in strait as late as July (Arctic Ice)
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	28	lc	U	Mass confusion regarding the number of bergs that enter the strait
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	29	lc	I	Bergs 50-70 m high and 200 m wide [Briggs, 1968]
1977	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	30	lc	С	No iceberg drawing more than 30 fathoms can reach the Western end of SOBI without breaking up
	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	-	lc	I	Icebergs - April to October
1977	NORDCO IDC Study of transportation and Electrical Power Link - SOBI	57	Ca	С	Lay a test cable to see if it gets broken. [WOW and we paid for this]

			Route,		Muskrat Falls Project - CE-44 Rev. 2 (Public)
Year	Report Reference	Page	Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Page 119 of 333 Description
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	8	С	Ι	Tides from 2-3 knots, up to 5 knots combined
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	9	0	l	There is little statistical current data.
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	9	I	С	Ice free between Aug and December
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	12	I	Q	Skagerrak, reliability for four cables at 250 kV
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	-	С	Q	Cook Inlet - 10 knots current
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	16	Ca	Q	Sweden-Denmark - Several faults occurred on the cable - Otter boards caused the damage
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	24	Р	U	Otter board details
1977	Department of Mines and Energy Proposed Belle Isle Cable Crossing	27	Ca	I	Cost in 1977, 2 cables, supply and install, burial, at 50-60 m.
1978	NORDCO Interim Report, Current Metering Program SOBI	1	С	Ι	Emphasis placed on bottom currents
1978	NORDCO Interim Report, Current Metering Program SOBI	-	С	С	Numerous issues with battery failures, deployment, etc.
1978	NORDCO Interim Report, Current Metering Program SOBI	22	С	I	Preliminary assessment
	NORDCO Interim Report, Current Metering Program SOBI	28	С	V	Currents in upper level as high as 3.2 knots.
	Misc Notes	-	lc	V	"Bergs have grounded in water 360 feet deep near the entrance to the Strait"
1979	Misc Notes	-	R		"Furrows have been found 2 miles long, 100' wide and 20' deep"
1979	Misc Notes	-	Ca	I	BC cable details: 525 kV, at 37 km, \$23M supply and install
1980	Kenting Interpretation Report for Marine Survey	I	lc	Ι	Eight iceberg scour marks occur in the Western area in WD ranging from 36 m to 83 m 2 found at 83 m.
1980	Kenting Interpretation Report for Marine Survey	11	lc	Ι	Iceberg scours, SSS data, lines 1220 and 41 Scour dimensions 250 m x 10 m x 1 m and 100 m x 8 m x 1m
1980	Kenting Interpretation Report for Marine Survey	14	lc	V	Iceberg scours - ten found in survey area lines: 510, 520, 530, 50 and 51 - one scour, 400 m long
1980	Kenting Interpretation Report for Marine Survey	-	lc	V	Small scours (<100 m long) two scours on line 460, one on 480 and 530
1979	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	-	Ca	Ι	Summary - recommended that cable suppliers and installers visit the site before they bid
1979	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	-	lc	V	The identification of scours in the 1974 survey contradicts 1968 and 1973 survey which had new marks. Some identified in 1974 located in depths in excess of 300 feet.

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 120 of 333 Description
1979	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	-	С	V	1963 Fraquharson and Bailey found 3 knots to be greatest current
1979	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	-	С	U	Recommend installing wave rider buoy for several months
	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	2.9	Ρ	I	Doors/Otter Boards - 6 x 4', 500 lbs each
1979	Shawmont SOBI Cable Crossing, Preliminary Engineering Report	-	R	Q	Ability to mark the charts with cable routing
???	[NORCO Current Study]	iii	С	V	- Max currents 4 knots at 12 m from bottom
1981	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	10	С	V	Max water depths 115 m with currents up to 4 knots
	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	19	lc	V	 Bottom is not conducive to the preservation of iceberg scour marks The veneer of sediment is not suited to preservation of scour imprints 105 m scour found is most likely not from recent scour
1981	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	21	С	V	4.1 knots of current max
1981	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	24	R	l	fig 3.2.1 - Borehole locations across the Strait
1981	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	25	Ο	I	ASK - dynamic positioning systems used by Rock Giant
	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	30	R	I	Summary of drilled depths in overburden and rock
	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	42	I	U	Weather can be different on both sides of the Strait, and in the middle
1981	Beaver Dredging Company Marine Borings and Surveys Volume 1 - Executive Summary	44	lc	С	Used long liners to tow away growlers
	Beaver Dredging Company Marine Borings and Surveys Volume 2 - Marine Surveys	-	R	I	Excellent bottom profile data
1981	Beaver Dredging Company Marine Borings and Surveys Volume 2 - Marine Surveys	97	lc	V	Thin score marks in area - believed to be caused by trawl boards, and not bergs
	Beaver Dredging Company Marine Borings and Surveys Volume 2 - Marine Surveys	98	lc	V	Zone E: two icebergs features - pock mark and distinct scour (100 m)
1981	Beaver Dredging Company Marine Borings and Surveys Volume 2 - Marine Surveys	100	0	I	Appendix A.2 - Measured tidal extremes

Year	Report Reference	Page	Route, Protection, Icberg, Current, Cable, Installation, Other	Actions: pose Question, Challenge, Validate, Unknown, key Info	Description
1981	Beaver Dredging Company Marine Borings and Surveys Volume 3 - Marine Borings	100	R	I	Appendix A.5 - Excellent photographs of seabed at boring locations
	ROCSAW Presentation in SOBI folder	-	Р	С	Rocsaw claims they have cut rock at 358 Mpa
	Statnett_norvege	3	Ca	Q	What is PEX insulation?
	Submarine HVDC Links 2008-11-06	17	Ca	U	MI cold temperature limits
	Electrodes 2001-10-09	-	Ca	I	Good discussion on electrodes
	Overview of 2008 Norway & Iceland Trips	-	Ca	I	Overview of companies with expertise in the field
	Dir. Drilling - Device - HK Tunnel Examples	-	Р	I	Info on HDD
	Currents in the SOBI - May 5 2009	-	С	V	Previous current work overview presentation

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 122 of 333

Appendix D- ABB Cable Cost

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 123 of 333

<u>To</u>:

Cc: Bcc: StephenDriscoll@nalcorenergy.com <StephenDriscoll@nalcorenergy.com>,

Subject: Fw: Budgetary Pricing for Cables and Vessels

----- Forwarded by Tim Ralph/NLHydro on 09/14/2010 09:57 AM -----

From:	Bengt Johnnerfelt <bengt.johnnerfelt@se.abb.com></bengt.johnnerfelt@se.abb.com>
To:	TimRalph@nalcorenergy.com
Cc:	ColleenSimpson@nalcorenergy.com, GerryHumphrey@nalcorenergy.com,
	GregFleming@nalcorenergy.com
Date:	09/14/2010 09:55 AM
Subject:	Re: Budgetary Pricing for Cables and Vessels

Tim,

Here are our budgetary prices (+/- 30%)

They are in Swedish Krona ,SEK, to avoid fluctuations in currencies .

Please note that the prices are per cable and you will need two cables as this will be a bipole .

Best regards, Bengt

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 124 of 333

Appendix E- Nexans HDD Pulling Tension Confirmation

Strait of Belle Isle Current Information - pulling tension Morten LANGNES to: TimRalph@nalcorenergy.com 09/09/2010 05:57 AM Cc: "GregFleming@nalcorenergy.com" Show Details

History: This message has been replied to and forwarded.

Tim,

Our engineering team has confirmed that allowable max pulling tension for the applicable cable design will exceed the estimated pulling force required. Therefore, from a cable point of view the pull-ins can be achieved.

Best regards

Morten Langnes Export Sales Manager Nexans Norway AS, Energy Division T: +47 22886293 | M: +47 99571588

Appendix F- Nexans Cable Cost

Fw: Strait of Belle Isle Current Information Tim Ralph to: Tim Ralph

09/03/2010 10:23 AM

----- Forwarded by Tim Ralph/NLHydro on 09/03/2010 10:23 AM -----

From:	Morten LANGNES <morten.langnes@nexans.com></morten.langnes@nexans.com>
To:	"TimRalph@nalcorenergy.com" <timralph@nalcorenergy.com></timralph@nalcorenergy.com>
Cc:	"GregFleming@nalcorenergy.com" < GregFleming@nalcorenergy.com>
Date:	09/01/2010 10:54 AM
Subject:	RE: Strait of Belle Isle Current Information

Tim,

I have updated our budget estimate to take into account that we double the amount of steel armour compared with the data sheets you received earlier.

The above will be our early information to assist you in your effort to meet the gate deadline. It is my intention to compile the various pieces of information into a document later.

I hope this is sufficient at the moment, otherwise let me know if you need further details of any kind.

Best regards

Morten Langnes Export Sales Manager Nexans Norway AS, Energy Division T: +47 22886293 | M: +47 99571588

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 128 of 333

Appendix G- Nexans MI Cross Sectional Breakdown

Vendor design information deleted from filing.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 129 of 333

Appendix H- Prysmian Pulling Tension

Vendor design information deleted from filing.

Appendix I- Prysmian Study Results

Vendor design information deleted from filing.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 131 of 333

Appendix J- Cu and Al Budgetary Costs

Budgetary Costs Cu and Al Tim Ralph to: Tim Ralph

01/04/2011 09:44 AM

----- Forwarded by Tim Ralph/NLHydro on 01/04/2011 09:43 AM -----

From:	"Livigni Massimiliano, IT" <massimiliano.livigni@prysmian.com></massimiliano.livigni@prysmian.com>
To:	<timralph@nalcorenergy.com></timralph@nalcorenergy.com>
Cc:	<gregfleming@nalcorenergy.com>, <gerryhumphrey@nalcorenergy.com></gerryhumphrey@nalcorenergy.com></gregfleming@nalcorenergy.com>
Date:	10/29/2010 03:15 PM
Subject:	RE: Trip Follow-up

Tim,

I am glad that you and Greg found the visit interesting and that we had the chance to discuss some key project issues face to face.

I copied my presentation on Greg's key.

Attached please find the presentation from Nikola as well as a drawing of a typical anchoring device for a double wire armored cable that we discussed at the meeting.

Regarding prices, please see below:

Budgetary price per meter of submarine cable (Al design): Budgetary price per meter of submarine cable (Cu design): Vessel day Rate: Eur

The above are indicative prices only and we reserve ther right to modify them based on receipt of additional project information and specific market conditions at the time of project execution.

Have a good week end.

Max

Appendix K- Vessel Traffic

MCTS CENTRE: MONTH/YEAR St. Anthony April 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT		1				1
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo						0
Bulk Cargo						0
Container						0
Tug			1			1
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government						0
Fishing	1					1
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	1	1	1	0	0	3
Ferry						
Total	1	1	1	0	0	3

MCTS CENTRE: MONTH/YEAR St. Anthony April 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT						0
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo						0
Bulk Cargo			2			2
Container						0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government			1			1
Fishing						0
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	0	0	3	0	0	3
Ferry						
Total	0	0	3	0	0	3

MCTS CENTRE: MONTH/YEAR St. Anthony 2010

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			3	0		3
Tanker >50,000 DWT						
Chemical Tanker						
LPG/LNG Carrier						
General Cargo			3			3
Bulk Cargo			4			4
Container			0			0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government	1	2	1	0		4
Fishing			3			3
Passenger			0			0
Other (vsls >20m)						0
Vessels < 20m						
Sub-Total Movements	1	2	14	0	0	17
Ferry			1			1
Total	1	2	15	0	0	18

MCTS CENTRE: MONTH/YEAR St. Anthony August 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			8			8
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo		2	30			32
Bulk Cargo			43			43
Container			31			31
Tug			1			1
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow		1	9		10	20
Government			3	8		11
Fishing			8			8
Passenger		1	3			4
Other (vsls >20m)				1		1
Vessels < 20m						0
Sub-Total Movements	0	4	136	9	10	159
Ferry						
Total	0	4	136	9	10	159

HIGH LEVEL

MARINE COMMUNICATIONS & TRAFFIC SERVICES STATINTING APAThs Project - CE-44 Rev. 2 (Public)

MCTS Centre: Month / Year:

August-2009

Page 138 of 333

St. Anthony

MOVEMENTS						
BY VESSEL TYPE	INBOUND	OUTBOUND	TRANSITING	IN-ZONE	OUT-OF-ZONE	TOTAL
Tanker < 50000 DWT	0	0	11	1	0	12
Tanker > 50000 DWT	0	0	0	0	0	0
Chemical Tanker	0	0	0	0	0	0
LPG/LNG Carrier	0	0	0	0	0	0
Cargo - General	0	0	21	0	0	21
Cargo - Bulk	0	0	22	0	0	22
Container	0	0	20	0	0	20
Tug	0	0	1	0	0	1
Tug with oil barge	0	0	0	0	0	0
Tug with chemical barge	0	0	0	0	0	0
Tug with Tow	0	0	3	0	0	3
Government	0	0	6	0	0	6
Fishing	0	0	3	0	0	3
Passenger Vessels	1	1	1	3	0	6
Other Vessels > 20 m	0	0	1	0	0	1
Other Vessels < 20 m	0	0		0	0	0
Sub-Total Movements	1	1	89	4	0	95
Ferry	0	0	0	0	0	0
Grand Total Movements	1	1	89	4	0	95

MCTS CENTRE: MONTH/YEAR

St. Anthony December 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT	1	1	4			6
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			5			5
Bulk Cargo	1	1	16			18
Container	1		17			18
Tug			1			1
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			2			2
Government	1	1				2
Fishing			1			1
Passenger			1			1
Other (vsls >20m)			1			1
Vessels < 20m						0
Sub-Total Movements	4	3	48	0	0	55
Ferry						
Total	4	3	48	0	0	55

MCTS CENTRE: MONTH/YEAR

St. Anthony December 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			9	1		10
Tanker >50,000 DWT						
Chemical Tanker						
LPG/LNG Carrier						
General Cargo			7			7
Bulk Cargo			42			42
Container			33			33
Tug						
Tug with Oil Barge						
Tug with Chemical Barge						
Tug with Tow						0
Government	3	2	2	4		11
Fishing			5			5
Passenger			2			2
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	3	2	100	5	0	110
Ferry						
Total	3	2	100	5	0	110

Marine Communications and Traffic Services Statistics St. Anthony M.C.T.S. / Belle Isle Traffic February 2008

		I CDI ual	y 2 000			
Movements By Vessel Type	Inbound	Outbound	Transiting	In-Zone	Out-of-Zone	Total
Tanker <50000			8			
Tanker >50000						
Chem. Tanker						
LPG/LNG Carrier						
Cargo – General			1			1
Cargo – Bulk			3			3
Container						
Tug						
Tug with Oil Barge						
Tug with Chem. Barge						
Tug with Tow						
Government						
Fishing						
Passenger Vessels						
Other Vessels > 20m						
Other Vessels < 20m						
Sub-Total			4			4
Movements						
Ferry						
Grand Total			4			4
Movements2						

MCTS CENTRE: MONTH/YEAR

St. Anthony February 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT						0
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo						0
Bulk Cargo			4			4
Container						0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government						0
Fishing						0
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	0	0	4	0	0	4
Ferry						
Total	0	0	4	0	0	4

MCTS CENTRE: MONTH/YEAR St. Anthony February 2010

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT						0
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			3			3
Bulk Cargo						0
Container			11			11
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government			2	1		3
Fishing			3			3
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements			19	1		20
Ferry			1			1
Total			20	1		21

Marine Communications and Traffic Services Statistics St. Anthony M.C.T.S. / Belle Isle Traffic January 2008

Movements						
By Vessel Type	Inbound	Outbound	Transiting	In-Zone	Out-of-Zone	Total
Tanker <50000						
Tanker >50000						
Chem. Tanker						
LPG/LNG Carrier						
Cargo – General			1			1
Cargo – Bulk			4			4
Container			2			2
Tug						
Tug with Oil Barge						
Tug with Chem. Barge						
Tug with Tow						
Government		1	2	2		5
Fishing			1			1
Passenger Vessels						
Other Vessels > 20m						
Other Vessels < 20m						
Sub-Total		1	10	2		13
Movements						
Ferry						
Grand Total		1	10	2		13
Movements						

MCTS CENTRE: MONTH/YEAR

St. Anthony January 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			6			6
Tanker >50,000 DWT			1			1
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			11			11
Bulk Cargo			12			12
Container	1	1	13			15
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			5			5
Government	1		2			3
Fishing			5			5
Passenger						0
Other (vsls >20m)	1		1			2
Vessels < 20m						0
Sub-Total Movements	3	1	56	0	0	60
Ferry					1	
Total	3	1	56	0	1	60

MCTS CENTRE: MONTH/YEAR St. Anthony January 2010

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			5			5
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			2			2
Bulk Cargo			16			16
Container			20			20
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government			1			1
Fishing			2			2
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements			46			46
Ferry			1			1
Total			47			47

MCTS CENTRE: MONTH/YEAR St. Anthony July 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			13			13
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			29			29
Bulk Cargo			27			27
Container			12			12
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			6			6
Government	1	1	3			5
Fishing			4			4
Passenger			2	1		3
Other (vsls >20m)	1		1			2
Vessels < 20m						0
Sub-Total Movements	2	1	97	1	0	101
Ferry						
Total	2	1	97	1	0	101

HIGH LEVEL

MARINE COMMUNICATIONS & TRAFFIC SERVICES STATINTING APAThs Project - CE-44 Rev. 2 (Public)

MCTS Centre:

St. Anthony July-2009 Page 148 of 333

Month / Year:

MOVEMENTS						
BY VESSEL TYPE	INBOUND	OUTBOUND	TRANSITING	IN-ZONE	OUT-OF-ZONE	TOTAL
Tanker < 50000 DWT	0	0	9	0	0	9
Tanker > 50000 DWT	0	0	2	0	0	2
Chemical Tanker	0	0	1	0	0	1
LPG/LNG Carrier	0	0	0	0	0	0
Cargo - General	0	0	11	0	0	11
Cargo - Bulk	0	0	19	0	0	19
Container	0	0	5	0	0	5
Tug	0	0	3	0	0	3
Tug with oil barge	0	0	0	0	0	0
Tug with chemical barge	0	0	0	0	0	0
Tug with Tow	0	0	4	0	0	4
Government	0	1	5	1	0	7
Fishing	0	0	4	0	0	4
Passenger Vessels	1	1	2	0	0	4
Other Vessels > 20 m	0	0	3	0	0	3
Other Vessels < 20 m	0	0	0	0	0	0
Sub-Total Movements	1	2	68	1	0	72
Ferry	0	0	0	0	0	0
Grand Total Movements	1	2	68	1	0	72

MCTS CENTRE: MONTH/YEAR St. Anthony June 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			9			9
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			15			15
Bulk Cargo			22			22
Container			13			13
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			1			1
Government		1	6			7
Fishing			7			7
Passenger	2	3		1		6
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	2	4	73	1	0	80
Ferry						
Total	2	4	73	1	0	80

Participating Vessels	2.67	Defects/Deficiencies	
Clearances Requested		Pollution Reports Land/Sea	
Reports to OGDs		Contraventions(Infringements/Violations)	
PPO Instructions		Traffic Recommendations	
Traffic Directions			

HIGH LEVEL

St. Anthony

MCTS Centre:

Page 150 of 333

June-2009

MOVEMENTS						
BY VESSEL TYPE	INBOUND	OUTBOUND	TRANSITING	IN-ZONE	OUT-OF-ZONE	TOTAL
Tanker < 50000 DWT	0	0	5	0	0	5
Tanker > 50000 DWT	0	0	0	0	0	0
Chemical Tanker	0	0	0	0	0	0
LPG/LNG Carrier	0	0	0	0	0	0
Cargo - General	0	0	6	0	0	6
Cargo - Bulk	0	0	7	0	0	7
Container	0	0	1	0	0	1
Tug	0	0	1	0	0	1
Tug with oil barge	0	0	0	0	0	0
Tug with chemical barge	0	0	0	0	0	0
Tug with Tow	0	0	1	0	0	1
Government	1	2	2	1	0	6
Fishing	0	0	5	0	0	5
Passenger Vessels	0	0	0	0	0	0
Other Vessels > 20 m	0	0	0	0	0	0
Other Vessels < 20 m	0	0	0	0	0	0
Sub-Total Movements	1	2	28	1	0	32
Ferry	0	0	0	0	0	0
Grand Total Movements	1	2	28	1	0	32

MARINE COMMUNICATIONS & TRAFFIC SERVICES STATINTING AFAIls Project - CE-44 Rev. 2 (Public)

Marine Communications and Traffic Services Statistics St. Anthony M.C.T.S. / Belle Isle Traffic March 2008

Movements						
By Vessel Type	Inbound	Outbound	Transiting	In-Zone	Out-of-Zone	Total
Tanker <50000						
Tanker >50000						
Chem. Tanker						
LPG/LNG Carrier						
Cargo – General						
Cargo – Bulk			3			3
Container						
Tug						
Tug with Oil Barge						
Tug with Chem. Barge						
Tug with Tow						
Government						
Fishing						
Passenger Vessels						
Other Vessels > 20m						
Other Vessels < 20m						
Sub-Total			3			3
Movements						
Ferry						
Grand Total			3			3
Movements						

MCTS CENTRE: MONTH/YEAR St. Anthony March 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT						0
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo						0
Bulk Cargo			4			4
Container						0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government						0
Fishing						0
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	0	0	4	0	0	4
Ferry						
Total	0	0	4	0	0	4

MCTS CENTRE: MONTH/YEAR St. Anthony March 2010

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT						0
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			1			1
Bulk Cargo			5			5
Container			14			14
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government	1	1	3	4		9
Fishing			4			4
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	1	1	27	4		33
Ferry						
Total	1	1	27	4		33

MCTS CENTRE: MONTH/YEAR St. Anthony May 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT	2	1	7			10
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			5			5
Bulk Cargo			6			6
Container						0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government			4			4
Fishing			4			4
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	2	1	26	0	0	29
Ferry						
Total	2	1	26	0	0	29

MCTS CENTRE: MONTH/YEAR St. Anthony May 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			2	2		4
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo						0
Bulk Cargo			1			1
Container						0
Tug						0
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow						0
Government				2		2
Fishing			1			1
Passenger						0
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	0	0	4	4	0	8
Ferry						
Total	0	0	4	4	0	8

MCTS CENTRE: MONTH/YEAR

St. Anthony November 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT	1	1	13	4		19
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			18			18
Bulk Cargo		1	35			36
Container			34			34
Tug			1			1
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			3			3
Government		1	3	1		5
Fishing			2			2
Passenger						0
Other (vsls >20m)						0
Vessels < 20m			1			1
Sub-Total Movements	1	3	110	5	0	119
Ferry						
Total	1	3	110	5	0	119

MCTS CENTRE: MONTH/YEAR

St. Anthony November 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT	1	1	15			17
Tanker >50,000 DWT						
Chemical Tanker						
LPG/LNG Carrier						
General Cargo			12			12
Bulk Cargo	1	1	44			46
Container			31			31
Tug						
Tug with Oil Barge						
Tug with Chemical Barge						
Tug with Tow			5			5
Government			1			1
Fishing			4			4
Passenger						0
Other (vsls >20m)			1			1
Vessels < 20m						0
Sub-Total Movements	2	2	113	0	0	117
Ferry						
Total	2	2	113	0	0	117

MCTS CENTRE: MONTH/YEAR

St. Anthony October 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			13			13
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			25			25
Bulk Cargo			36			36
Container			37			37
Tug			4			4
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			3			3
Government	1	1	5	1		8
Fishing			2			2
Passenger	1	2				3
Other (vsls >20m)						0
Vessels < 20m						0
Sub-Total Movements	2	3	125	1	0	131
Ferry						
Total	2	3	125	1	0	131

MCTS CENTRE: MONTH/YEAR

St. Anthony October 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			20			20
Tanker >50,000 DWT						
Chemical Tanker						
LPG/LNG Carrier						
General Cargo			22			22
Bulk Cargo			29			0
Container			22			22
Tug		1				1
Tug with Oil Barge						
Tug with Chemical Barge						
Tug with Tow		1	6	2		9
Government			2			
Fishing			7			7
Passenger	1	1	2			4
Other (vsls >20m)			1			1
Vessels < 20m						0
Sub-Total Movements	1	3	111	2	0	117
Ferry						
Total	1	3	111	2	0	117

MCTS CENTRE: MONTH/YEAR

St. Anthony September 2008

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT	2	2	12	1		17
Tanker >50,000 DWT						0
Chemical Tanker						0
LPG/LNG Carrier						0
General Cargo			26			26
Bulk Cargo			32			32
Container			44			44
Tug			1			1
Tug with Oil Barge						0
Tug with Chemical Barge						0
Tug with Tow			2			2
Government	2	1	3	1		7
Fishing		1	8			9
Passenger		1	4	1		6
Other (vsls >20m)			1			1
Vessels < 20m						0
Sub-Total Movements	4	5	133	3	0	145
Ferry						
Total	4	5	133	3	0	145

MCTS CENTRE: MONTH/YEAR St. Anthony Sept 2009

Vessel Type	Inbound	Outbound	Transit	In-Zone	Out-Zone	Total
Tanker <50,000 DWT			12			12
Tanker >50,000 DWT						
Chemical Tanker						
LPG/LNG Carrier						
General Cargo	1		15			16
Bulk Cargo			28			0
Container			23			23
Tug						
Tug with Oil Barge						
Tug with Chemical Barge						
Tug with Tow			5			5
Government						
Fishing			5			5
Passenger	2	2	4			8
Other (vsls >20m)			1			1
Vessels < 20m						0
Sub-Total Movements	3	2	93	0	0	98
Ferry						
Total	3	2	93	0	0	98

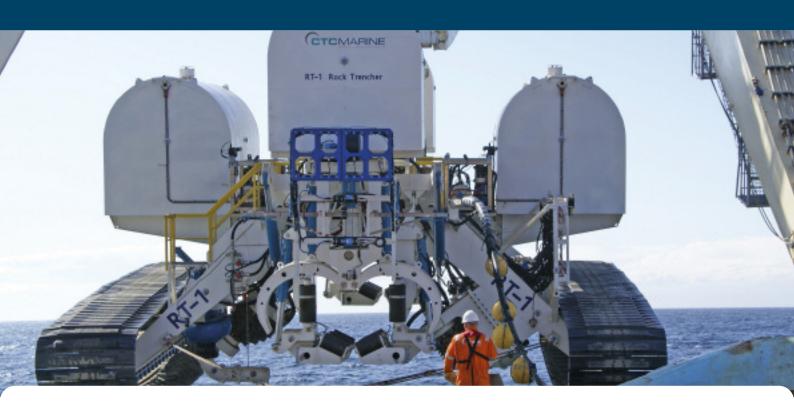
Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 162 of 333

Appendix L- Fishing Gear

Final report filed separately as Exhibit 34.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 163 of 333

Appendix M- HDD Feasibility Report


Final report filed separately as CE-41

Appendix N- RT-1 and Assotrencher IV

Muskrat Falls Project - CE-44 Rev. 2 (Public)

RT-1 ROCK TRENCHER

RT-1 Rock Trencher

The RT-1 Rock Trencher is the world's largest tracked underwater trencher. With 2.35MW of effective trenching power it is designed specifically for the burial of pipelines/ trunklines in hard soil regions.

The innovative, unique triple chain cutter configuration defines a wide, sloping 'V' shaped trench allowing the stabilisation and protection of large diameter pipeline for trunkline burial. This methodology delivers improved economic and environmental benefits in comparison to other protection methodologies.

RT-1's advanced designed pipe lifting technology allows the lift of heavy flooded pipelines. The unique cutting system is adaptable to allow burial of flexible products such as umbilicals and flowlines in a variety of soils.

CTC operate some of the world's largest, most technically advanced marine trenching vehicles and vessels enabling us to complete workscopes ranging from trenching, to a more comprehensive subsea protection service for the international offshore construction industry.

Key Features

- Trunkline burial in cemented materials
- Dredge system for high efficiency
- Flexibility for hard or soft soils
- Trench depths up to 2m at current configuration

Muskrat Falls Project - CE-44 Rev. 2 (Public)

The RT-1 Rock Trencher is not limited to these parameters and can be modified

DREDGE AND JETTING SYSTEM

Configuration

Main Jetting System

Pumps

by CTC to complete workscopes in excess of its current configuration.

soft overburden collapse 4 x 80kW heavy duty dredge pumps.

Operating point approximately 1500m³/hr @ 0.75 bar

and HPU cooling as required

Four hydraulically driven dredge pumps. Two mid mounted units to remove spoil excavated in front of the main chain cutters. Two rear mounted

units for clearing re-circulated spoil from the chain cutters and any premature backfill from

2 x 350kW direct coupled motor/ pump sets – approximately 2400m³/hr @ 7 bar. Supplies rear

jet legs, dredge heads, cutter chain cleaning

ASSET OVERVIEW SHEET

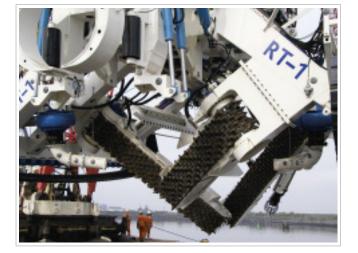
GENERAL

Operating Depth	500m
Maximum Trench Depth	2m
Trench Profile	'V' Trench – 45 degree wall
Pipe Size	1500mm O.D maximum clearance (includes allowance for anodes, joints and piggy-back line)
Pipe Following	TSS440 pipe tracker, OA sonar and cameras

DIMENSIONS

Length	22.5m	
Width	13m	
Height	9.6m	
Weight in Air	202te	

PIPE HANDLING


Configuration	2 cradles
Pipe Load	65te maximum per cradle
Pipe Size	1500mm O.D lateral clearance 1500mm O.D vertical clearance
Roller Configuration	2 sets of triple rollers per cradle

SOIL TYPES

Suitable for a range of sands, clays and rock

CHAIN CUTTER SYSTEM

Configuration	Three individually powered and positioned cutter chains, set at 45 degrees
Pipe Load	Chain 1 – 250kW Chain 2 – 400kW Chain 3 – 400kW
Pipe Size	Heavy duty interleaved chain
Roller Configuration	Chain 1 - variable to 2.4m/s Chain 2 - variable up to 3.2m/s Chain 3 - variable up to 3.2m/s
Cutter Width	800mm

ADEPT AT ADAPTING -

Head Office

Coniscliffe House, Coniscliffe Road, Darlington, DL3 7EE, England T I (+44) 0 1325 390 500 F I (+44) 0 1325 390 555 E I commercial@ctcmarine.com

Singapore Office 15 Changi South St1, Singapore, 486783 T1 (+65) 6329 9642 F1 (+65) 6543 3416 E1 singapore@ctcmarine.com

Perth Office

Level 2, 33 Barrack Street, Perth, 6000, Western Australia T I (+61) 8 9218 8400 E I australia@ctcmarine.com Aberdeen Office The Enterprise Centre, Exploration Drive, Bridge of Don, Aberdeen, AB23 8GX, Scotland T I (+44) 0 1224 355 440

Dubai Office

P.O. Box 54455, Office No. 5WA 228, West Wing Building #5A, Dubai Airport Free Zone, Dubai U.A.E T (+971) 4 299 3677 F I (+971) 4 299 3946

CTC Marine Projects Ltd. accepts no responsibility for and disclaims all liability for any errors and/or omissions in this publication. SPECIFICATION SUBJECT TO CHANGE WITHOUT NOTICE.

REV01/LH

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 167 of 333

Assotrencher IV

Assotrencher IV, built for the purpose of executing burial works in soils and conditions where three factors co exist; Very hard soils, Uneven territories and little or no slack given to the cables. Its unique design and method of operation, enables the loading and securing of heavy cables on the vehicle, without reducing its' ability to maneuver or perform effectively the trenching operation.

Although its' long dimensions, Assotrencher IV is able to maneuver effectively in rough territories and to withstand the extraordinary shear forces and tensions resulting from trenching in areas full of rocks and boulders.

Assotrencher IV, as the entire "Assotrencher" family vehicle, uses high end technology to show the operator and record all crucial information necessary to accumulate the condition of the vehicle and the cable. Crucial data are recorded in real-time, including images from cameras and profiling and scanning sonars.

Assotrencher IV

MAIN DATA

Length:	6.5 m
Breadth:	3.9 m
Height:	3.5 m
Weight:	25,000 kg
Depth rating:	200m

TOOL OPTIONS

Cutting Wheel (1)

Used in hard s	oils (rock, hard clay)
Diameter:	2.0 m
Weight:	2,500 kg

Cutting Wheel (2)

Used in hard so	ils (rock, hard clay)
Diameter:	2.5 m
Weight:	6,500 kg

Rocksaw

Used in mix soils	(gravel, stones)
Length:	4.9 m
Weight:	5,000 kg

CABLE LOADING SYSTEM

A system of four (4) remote operated grabbers is fitted onto the vehicle for loading the underwater cables to be protected. This system is diver less and utilized these specially made grabbers installed on the lower part of the vehicle, for bottom – loading power cables that have little slack available.

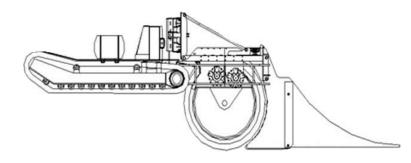
UMBILICAL

Consisting of multiple Medium Voltage Lines for powering the vehicle and single mode fibers for the communication purposes. Extra simple power lines are also installed for backup purposes, in case of failure of the primary communication lines.

POWER STATION

A container fitted with the necessary medium voltage fields and the necessary safety measures for the powering of the vehicle is used and installed nearby the generating sets. This container is remotely controlled and monitored from the control room container.

CONTROL ROOM


The control system of the vehicle is installed inside a air conditioned 20ft container with large windows for monitoring the launch and recovering activities on deck.

Inside this control room all the necessary controls, monitors (video and VGA), recording devices and powering arrangements are installed, while uplink outputs are available for the connection of the control room to the remote viewing stations on the support vessel.

Monitoring of the vehicle and recording is done from PCbased software with graphic user-friendly display. Back-up systems are also installed for handling emergency situations.

SENSOR EQUIPMENT

- Simrad/Mesotech scanning sonar
- Simrad/Mesotech profiling sonar
- 8 low light underwater cameras
- 2 Pan-Tilt camera modules
- Simrad Transponder/Responder
- Compass/Attitude sensors
- 6 Underwater lights
- Pressure monitoring system
- TSS 350 Cable Tracker (option)
- Onboard small inspection ROV (option)

34 Charilaou Trikoupi st. • Piraues • GR 18536, Greece, Tel: +30 210 4527050 Fax: +30 210 4527053 central@assodivers.gr • www.assodivers.gr

Appendix O- Shore Based Tunnel to Seabed Techniques

ADDF	R.: Statnett Projects Hoffsve PO Box	SF //Cable Technology ien 70B, 0377 Oslo 5192 Majorstuen OSLO, NORWAY	Shore based	BI Cable Cros	d techniques
Classi	ification		Project No.	mediate comme	nts
	fidential		IFS 55247		
Respo BK	onsible departme	ent	Document No. 1456707	Pages + att 8	tachments
Client Nalo	or Energy		Client reference WTO DC1401	Order No. LC-PM-0	007
Summ	nary, result:				
The Lower Churchill Project is in the process of comparing the tunnel crossing option and the submarine cable option for the HVDC cable crossing of the Strait of Belles Isles. This preliminary report is giving immediate answers to details regarding tunnel to seabed techniques. A final report will be issued shortly. It seems to be a sufficient experience base for thinking that a safe shore approach consisting of a combination of tunnel and drilled holes can be constructed, even if the tunnel ends far below the water surface.					
Rev	Date	Description	Author	Checked	Approved
2 2A 1	2010-09-10	Issued for client review	TL/GJ/JES	KBø	

This document is issued by means of a computerized system. The digitally stored original is electronically approved. The approved document has a name entered in the approved-field. A manual signature is not required

CONTENTS

1	INTRODUCTION	3
2	BACKGROUND	3
3	ALTERNATIVE SHORE APPROACH METHODS	3
3.1	Examples	4
3.2	NorNed and Troll Cable shore approaches	6
3.3	Miscellaneous	7
3.4	Tunnel and sealing details	8
3.5	Pull-in and installation of cable	8
4	SHORE APPOACH LABRADOR	8
5	SHORE APPROACH NEWFOUNDLAND	8

1 INTRODUCTION

Statnett worked under a sub-contract with Hatch, until December 2008 with a preliminary cable study based on a seabed installation concept.

This report contains immediate answers to questions raised by LCP in WTO DC1401 under Advisory contract LC-PM-007.

The report aims at giving immediate comments to the Part 1 questions raised in the scope of work for the Shore based tunnel to seabed techniques task.

Further elaboration will be presented in a final Part 1 and 2 reports.

2 BACKGROUND

The Strait of Belle Isle is being considered as the location for the subsea power cables that would transmit the electricity to the island of Newfoundland. The Strait of Belle Isle is 17.5 km across at its narrowest point and is perhaps considered on the difficult end of the prectrum for cable projects. The Strait is fraught with sea ice and icebergs for a majority of the year, high currents, difficult bathymetry, harsh weather conditions and significant geotechnocal challenges.

To further develop this project, Nalcor is in the process of conducting studies for two potential crossing scenarios with one being the seabed option, and the other being a tunnel option.

For the seabed option, the exact cable route has not been finalized; however, it is assumed that it will have a shore approach on the Labrador coast with a landing site in the area near Pointe Amour and on the Newfoundland Side in the area year Yankee Point.

The purpose of this scope of work is to further understand methods, technologies, and details for installing a cable from a shore-based tunnel to the seafloor. It is the goal of the SOBI task force team to fully understand the capabilities and limits of the technologies associated with these operations, as well as examples from around the globe where these techniques have been utilized. The Hatch report prepared by Statnett, "DC1130 – Submarine Cables, Strait of Belle Isle", submitted to Nalcor Energy in December 2008, alludes to the application of such methods. Further details are desired in order to understand the opportunity for application for the seabed crossing.

3 ALTERNATIVE SHORE APPROACH METHODS

When considering shore approach methods for the SOBI crossing it is interesting to compare conditions and methods used earlier with what is relevant and feasible in Strait of Belle Isle. The below table lists some of the world's most important power cable connections.

	Name	Route length km	Cable length km	Max. depth m	Voltage kV	Year	Make
1	Gotland – Sweden	93	93	170		1953	ABB
2	Kontiskan (Sweden – Jutland)	88	88	80		1964	ABB
3	Skagerrak 1 & 2	128	256	550	250	1976	Nx

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 173 of 333

SOBI Cable Crossing

Rev.: 1 Date: 2010-09-10

4 of 8

Page:

Shore based tunnel to seabed techniques, Immediate comments

4	Italy– Corsica – Sardinia	119	238	500	200	1965	Р
5	Fenno Skan 1 (Sweden–	200	200	120		1989	ABB/Nx
	Finland)						
6	Basslink (Victoria – Tasmania)	295	295	200	400	2006	Р
7	SwePol (Sweden – Poland)	250	250	80	450	2000	ABB
8	Italy – Greece	163	163	1000		2000	Р
9	NorNed (Norway –	580	1160	410	450	2007	ABB/Nx
	Netherlands)						
10	Italy – Corsica – Sardinia	120	-	500	-	D	P/Nx
11	Spain – Mallorca	ca 180	-	900-1800	-	D	P/Nx
12	Fenno Skan 2	200	200	120	500	2011	Nx
13	Spain – Morocco (SCFF)	25	175	615	420	1995	Nx/P
14	Gulf of Aqaba (SCFF)	15	60	800	420	1998	Nx

ABB – ABB High Voltage Cables Nx – Nexans Norway P – Prysmian D – Project under development

It is an obvious fact that none of the existing connections is directly comparable to the planned SOBI crossing. The combination of the relatively shallow and very rocky conditions combined with severe ice conditions both in terms of drifting winter ice as well as icebergs drifting through the strait, makes the shore approach challenges new and special.

This is why the solution applied in the NorNed case has inspired the method described in the feasibility report issued by Hatch with Statnett as subcontractor.

This method will be given immediate comments in this report while the comparison with other installations will be further developed in the complete report to be issued later.

3.1 Examples

It is perhaps five categories of cable installation methods which might be of interest for the SOBI crossing: The a. "NorNed method", b.directional drilled installations, c.pre-installed pipes ,d.J-tubes and e.subsea tunnel with vertical riser shaft.

a. The NorNed method is shown on the drawing below. It is the only of its kind.

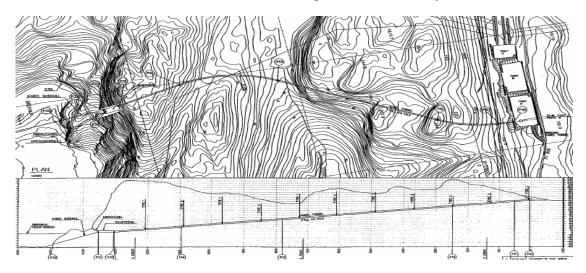


Figure1 The NorNed tunnel and drill hole cable installation

A large tunnel 25 m² with 12% steepness is leading from the converter station and down to a jointing chamber approximately 5m above highest water level. To the jointing chamber the submarine cables were pulled in through 300 mm drilled rock holes lined with thick walled polyethylene pipes.

Basically the same concept has been presumed in the Statnett/ Hatch report, the main difference being that the drilled holes will have to be directed horizontally or probably upwards and would need to penetrate towards e.g. 7 bar water pressure.

Exactly this method has not been applied for a large power cable before. However, at Kallsto west of Haugesund a similar method was used for a gas pipeline and for a control cable. This will be further described in the final report.

b. Directional drilled installations

Pulling of all sorts of cable through drilled, lined holes has become quite common in cable connections for example in motor road crossings, river crossings, etc.

The longest pulling known to us so far with cable of a relevant weight is 500m. The safe length will depend on the friction and of number and character of the bends and whether horizontal or vertical.

c. Pre-installed pipes

Solid shore approach protection can be achieved by pre-installing steel pipes or polyethylene pipes. The pipes can be put into blasted or excavated trenches and be anchored and protected by concreting, rock dump, sandbagging or other.

This method was used in Osundet in the first power from shore project to Troll A platform. The large cable was pulled through approximately 50 m thick walled polyethylene pipes from 5 m water depth and up to a jointing pit.

Another example known to us is a river crossing in Tinn river close to Notodden in Norway. To protect and anchor the three single core cables in the strong river current three polyethylene pipes were laid in a pre made trench and special concrete was used for under water concreting of the trench backfill.

d. J-tubes

When bringing cables (as well as umbilicals) from sea floor and up to the topside of an offshore platform J-tubes of steel is being used. The experience with pulling of cables and sealing at the entrance and on the top of these J-tubes is relevant when trying to find good safe methods for SOBI shore approaches.

World wide it is a large number of this type of installation.

e. Subsea tunnel with vertical riser shaft

The perhaps most important example is the Troll A pipeline to shore approach. Two 1 m diameter, two flow pipelines was to be installed from 350 m water depth and to shore over a relatively short distance and through very uneven, rocky seabed.

	Muskrat Fails Project - CE-44 Rev. 2 (Public) Page 175 of 333		
SOBI Cable Crossing	Rev.:	1 2010-09-10	
Shore based tunnel to seabed techniques, Immediate of	comments Date:	2010-09-10 6 of 8	

It was decided to let the last 3.6 km towards shore be installed in a subsea tunnel. The connection to the seabed was made by blasting a vertical shaft.

3.2 NorNed and Troll Cable shore approaches

As already explained **NorNed** utilises a combination of tunnel and drilled holes. The very steep, rocky shore made this solution simple to apply since the bore hole reached 50 m water depth with a length of 150 m only.

The tunnel as such and the way the cable is installed is relevant and applicable for SOBI shore approach tunnels. However, the fact that the tunnel will end a considerable number of metres below the water surface creates many additional challenges.

When the 70 km 52 kV AC cable from shore to the **Troll A** gas platform was to be engineered in 1993 it was carefully considered if the power cable should utilise the same shore approach as the two large pipelines. The concept for that shore approach is shown as an artist's impression in figure 2 below.

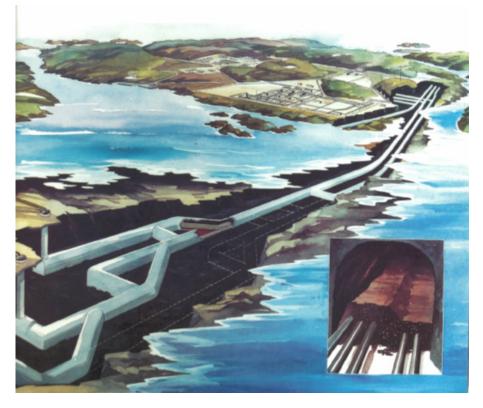


Figure 2 – The Troll gas pipeline shore approach tunnel system

The principle used is the same as developed for hydro power schemes built inside mountains. When the headrace tunnel reaches the intake dam the piercing is normally done by means of a vertical shaft and the last remaining metres blasted under water letting the blasted rock fall down into the tunnel.

The pipeline transition from seafloor to tunnel was arranged as a vertical riser with preinstalled bends in the "hat" which was mounted at the top of the vertical shaft. The subsea tie in was done as usual.

	Muskrat Falls Project - CE-44 Rev. 2 (Public)				
		Page	176 of 333		
SOBI Cable Crossing		Rev.:	1		
Shore based tunnel to seabed techniques, Immediate of	comments	Date: Page:	2010-09-10 7 of 8		

A method for cable tie in was developed and cost estimated and a thorough comparison was done with a bit longer cable route but with a more normal shore approach. The latter was chosen for the following main reasons:

- 1. Lower cost
- 2. Risk related to prototype installation method
- 3. The very large tunnel was for safety reasons (gas) to be operated flooded and it would take 2-3 months to empty and make the tunnel ready for a potential cable repair.

3.3 Miscellaneous

Tunnel gradient The 12% gradient has been recommended as that gradient makes both construction as well as later use of the tunnel practical based on ordinary truck driving.

Cable jointing chamber The design of a rock cavern for jointing will be determined by usage aspects like initial and future number of cables, requirements for any safety or service facilities, the need for turning a truck. The jointing itself will take place in some sort of jointing house (in most cases part of the cable supplier delivery) inside the tunnel, normally with much smaller dimensions than the tunnel or the cavern.

Sealing arrangement As can be understood from the examples described, there is up to now no direct reference for the potential SOBI case where it would be a need for sealing against ca 7 bar water pressure. However, based on the Kallsto experience and on engineering using a combination of previous, well established methods, we see clear possibility to basically maintain the proposed shore approach method. The intention is to describe this in more detail in the final report.

Construction of micro tunnels There exist different drilling techniques for construction of micro tunnels. Examples will be described in the final report. Although we think that micro tunnelling can be used also when working against water pressure, it is reason to alternatively consider use of the vertical shaft method for the piercing.

Drilling gradient Upwards drilling gradient is preferred because it is easier to get rid of the drill mud. It is, however, quite possible to drill downwards. This was done in the NorNed case.

Micro tunnel diameter is determined by the cable pulling conditions. The rule of thumb is to try to achieve an inner diameter of the micro tunnel of 1.5 times the outer cable diameter. That could typically lead to a 200 mm requirement. With a thick-walled lining and some need for clearance for installation of the lining a 300 mm bore hole is in many cases practical. And this type of diameter can most often be achieved in one single drilling operation.

Steel tube lining With micro tunnels in rock different types of lining can be used. In the NorNed case thick-walled polyethylene was used. However, when sealing against considerable water pressure is to be part of the system, steel lining is most likely a more practical solution.

Details on steel lining installation Something more on this subject will be made part of the final report. It is, however, important to be aware that different contractors would have different preferences with respect to construction methods. In the rock hole case the lining

will and can in most cases be installed after the drilling has been completed by pulling the full length into the hole in one continuous pulling operation.

Drilling technology status As already stated this subject will be elaborated on in the final report.

Achievable hole lengths Our understanding is that the present longest experienced micro tunnel drilling onshore is 750 m. More update on this later.

Available contractors It is presently three-four Norwegian companies specialising in rock micro tunnelling. A broader picture to be established in the final report.

3.4 Tunnel and sealing details

Answers raised will be answered more completely in the final report. A large plug in the tunnel will rather be made by a combination of steel and concrete.

The question regarding permanent or temporary pumping arrangement needs to be determined after having established an operational philosophy for the cable crossing. The system which will give the quickest access and readiness for inspections and a potential repair is of course to install permanent lighting and a pumping system. Anyway a pumping system during construction will most likely be necessary.

3.5 Pull-in and installation of cable

The main principle for the pull-in operation is to get the cable connected to a winch wire and get the cable pulled in in a controlled manner by subsea ROV monitoring and proper communication between the different operators on the cable ship and in the tunnel. At a depth of 70 m only this type of operation is a well established operation. The plan is to get this described and illustrated in the final report.

4 SHORE APPOACH LABRADOR

The character of the Labrador shore is different from the Newfoundland side. Relatively deep water is reached much faster. Before finally concluding that a subsea tunnel is needed, we suggest to review the conditions to see if the NorNed concept after all could be utilised on that side. If so, easier operations and lower cost would be achieved.

5 SHORE APPROACH NEWFOUNDLAND

Construction wise the Newfoundland side is the most challenging because of the shallow, very rocky shore. It might be that a shore approach tunnel will be the best solution in order to achieve an ice safe installation. It would easily be high cost and a difficult task to get sufficient cable protection all the way down to 70 m water depth. And such an operation is also very unpredictable.

Appendix P- Pro Dive Solutions

Subsea Mattress

FoundOcean

Pro-Dive Marine Services, in conjunction with FoundOcean, provides specialized geo-technical and structural services to the Canadian oil and gas industry. Focusing on installation, maintenance, repair and protection of platforms, templates and pipelines, a range of activities from feasibility studies through conceptual design, trials, procurement and construction to the provision of personnel and equipment for field operations are undertaken.

In 1989 Pro-Dive Marine Services entered into an exclusive agreement with FoundOcean to provide the FoundOcean line of products to the Canadian marketplace. Subsequently, both companies have successfully undertaken various client-specific projects.

Pro-Dive Marine Services and FoundOcean continually endeavor to comply with our client's specific requests. Emphasizing safety, quality products, and on time delivery, we can provide innovative low cost solutions to subsea related problems.

Services Offered

Pro-Dive Marine Services, in conjunction with FoundOcean, offers an extensive range of products and services, which include:

- Consultation, feasibility studies and systems related engineering
- Flexible concrete mattresses, precast units and ScourMat
- Grout mixing and pumping equipment
- Pipeline protection and stabilization
- Design and manufacture of fabric formworks
- Ballasting using viscous and heavy slurries
- Pipeline abandonment and plugging
- Inspection, repair and strengthening of offshore structures

The following subsections summarize the specialized offshore construction services offered by Pro-Dive Marine Services and FoundOcean.

Flexible Concrete Mattresses and Pre-Cast Units

- Flexible pre-cast concrete mattresses are used for weight coating, support, stabilization and protection of pipelines and umbilicals. Lift frames are also available for subsea installation by diver, ROV, or top side deployment.
- Precast concrete units for crossings, ramps, supports and pipeline protection.

Massiv Mesh

Massiv Mesh is a flexible, concrete mattress consisting of hexagonal concrete elements linked together with high strength non-degradable polypropylene rope.

The mattresses have many uses in the protection, support and stabilization of subsea structures and have been designed for their flexibility and ease of handling during installation.

Tides and currents cause erosion of the seabed adjacent to

<u>Flexiweight</u>

Flexiweight is a concrete mattress consisting of hexagonal section bars, reinforced with steel and linked by polypropylene rope. Flexiweight is flexible, robust, designed for ease of installation and available in a range of sizes and concrete densities.

Flexiweight has an established track record for such

applications as Stabilization, Crossovers, Trawlboard, Cable protection and Scour prevention.

ScourMat

solid objects known as scour. Scour affects the stability of pipelines and subsea structures and can also cause considerable damage to coastal areas.

ScourMat is made from a series of polypropylene fronds attached to a polypropylene net and linked by a framing network of webbing that extends around the periphery and crosses the mat at regular intervals. A number of specially designed anchors are attached to the webbing.

Underwater, the fronds open out to form a fan like array, which slows down the local current and causes particulate matter to settle. This eventually builds up a new sandbank, effectively reinstating the seabed. This fiber-reinforced sandbank will then resist further erosion.

<u>SeaMat</u>

SeaMat, a stabilization and protection system, based on bitumen-coated aggregates encased within a man-made woven fiber envelope, complete with integral lifting straps. Reinforcement is achieved by the use of a polypropylene Geogrid cage.

SeaMat is designed to remedy the following subsea problems:

- Scour
- Crossover protection
- Impact damage

Provision of Mixing and Pumping Equipment

Pro-Dive Marine Services, in conjunction with FoundOcean, has an extensive range of cement mixing and pumping equipment, for all types of offshore construction activities, available. The

equipment is capable of mixing very low water content (viscous and heavy) slurries. A wide selection of pump sets provides the optimum rate required for the best results. This equipment has been used for the following applications:

- · Grouting activities associated with fabric formworks
- Platform construction pile grouting
- Perform repair and maintenance
- Template / structure ballasting
- Concrete structure repair and maintenance
- Pipeline plugging and well abandonment

Pro-Dive Marine Services has the total capacity and flexibility to work as a primary contractor in association with design engineers, operators and contractors, throughout the various phases of a project, from solution design through to the implementation of the project.

Fabric Formwork

Engineering fabric formwork offers a considerable range of possibilities to the offshore industry. In addition to the standard pipeline supports, specially designed fabric formwork is supplied for specific requirements, including:

- Mattresses for load distribution
- Pipeline crossings
- Riser supports
- Anti-scour systems
- Fabric seals for structural work in platforms

These varied systems have been used in water depths of 340 meters; deeper waters are within the scope of the plant.

Subsea procedures are developed to ensure that the underwater contractor correctly applies the solutions. Attention to detail ensures that subsea time, whether for divers or ROV's is reduced, thus reducing the overall cost of the operation.

Specialized Grouting Equipment

Pro-Dive Marine Services and FoundOcean have acquired specially developed grouting equipment suitable to the wide range of work undertaken in the offshore environment. The well proven colloidal mixing principle gives excellent grout qualities suitable for underwater applications and has been adopted for all equipment.

The main characteristics are:

- Compact skid mounted module units for restricted working space
- Established colloidal mixing system for underwater grouting
- Provision of pressurized bulk cement silos
- Ability to handle bagged materials (if required)
- A range of grouting outputs and injection pressures to suit application
- Facility to place grout at substantial underwater depths

In addition to fabric related applications Pro-Dive Marine Services and FoundOcean have the necessary expertise to undertake all aspects of offshore grouting including:

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 182 of 333

- Infilling of tubulars
 Annulus grouting
 Foundation underbase grouting
 Structural repairs

Appendix Q- COPS Report

Muskrat Falls Project - Cl	E-44 Rev. 2 (Public) Page 184 of 333	
COPS	Chapter n°	XXX
Vehicle	Révision	2
	Date	07 / 2010

DESCRIPTION

Page 1/7

1.0	Sumn	nary
	1.1	Description
	1.1.1	Vehicle
	1.1.2	Frame
	1.1.3	Track System
	1.1.4	Thrusters
	1.1.5	Hydraulic Power System
	1.1.6	Process Table
	1.2	Vehicle Performances
	1.2.1	Ground Pressure
	1.2.2	Speed
	1.3	Instrumentation
	1.3.1	Sector Scanning Sonar
	1.3.2	Profillers
	1.3.3	Compass
	1.3.4	Cable Tracker
	1.3.5	Other Sensors & Accessories
	1.3.6	Control & Power Van
	1.3.7	Umbilical Winch and Slip Ring
	1.4	Drawings
	1.4.1	Front view
	1.4.2	Top view
	1.4.3	Side view

Muskrat Falls Project	• •	
COPS	Page 185 of 333 Chapter n°	XXX
Vehicle		
	Révision	2
	Date	07 / 2010
DESCRIPTION	Page	2/7

1.1	Description
	The COPS spread is meant for the protection of submarine cables, umbilicals and pipelines. Equipped with all features for tracking cables or P/L's, the COPS consists in laying a grout-filled formwork astride the cable, umbilical or P/L to be protected.
1.1.1	Vehicle
	Dimensions: 7.0m x 5.2m x 4.2m (L x W x H) Weight (vehicle equipped with standard devices and empty bag reel): • in air
1.1.2	Frame
	The crawler frame is a flanged pipe structure which can be dismantled for containerisation. CAD technique and finite elements computations were used for optimisation.
1.1.3	Track System
	Track assembly with Caterpillar® chain (D3) and standard 1.2m-wide polypenco grousers motorised via 2 sprocket wheels driven by hydraulic motor. They can be controlled at slow speed (down to 10 m/hr) for good synchronisation with grout injection. Bench length: 5 m.
1.1.4	Thrusters
	2 horizontal thrusters (2 x 250daN pull) for azimuth orientation driven by hydraulic motor.
1.1.5	Hydraulic Power System
	One electric motor (45kW - 760V 60Hz or 40kW - 660V 50Hz) drives a set of 2 dual pumps (25 cm ³ /r, 37.5-45 l/min) with adjustable flow and proportional control. The distributors for switch-over between tracks and thrusters and capacity adjustment are housed inside the hydraulic tank.
1.1.6	Process Table
	This is a light alloy structure where the formwork is being deployed at the outlet of the reel for grout injection and which carries all accessories and sensors necessary to the process (grout injection retractable nozzle, bag cutting and stapling tool, inclinometers for grout level monitoring, proximity sensors, etc.)

Muskrat Falls Project - 0	CE-44 Rev. 2 (Public)	
COPS	Page 186 of 333 Chapter n°	XXX
Vehicle	Révision	2
	Date	07 / 2010

DESCRIPTION

1.2 Vehicle Performances

The vehicle characteristics are such as to achieve the best productivity in terms of formwork injection & laying based on the expected slurry production level.

1.2.1 Ground Pressure

With 12m2 overall bearing surface based on the standard [1.2m-wide] grousers, the pressures exerted on the ground are:

1.2.2 Speed

Adjustable between 0 and 500 m/hr (380V 3Ph 50Hz) or 0 to 600 m/hr (440V 3Ph 60Hz).

1.2.3 Safety Devices

In case of breakdown, the vehicle has hydraulic capacity to undertake the following emergency functions: retracting the grout injection nozzle, closing (stapling) and cutting the formwork, opening the grout by-pass valve and clutching the handling device for the recovery.

1.2.3 Main Control Functions

From the Control Van where the position of the crawler in relation to the cable is displayed based on measurements from the cable/pipe tracker, two control modes are applicable to drive the machine :

- Manual mode where all functions are pilot-controlled, or
- Auto-heading mode where the pilot selects a set heading an drives the vehicle strictly based on speed control.

1.3 Controls & Sensors

1.3.1 Sector Scanning Sonar

1 x Tritech Sector Scanning Sonar type ST525BT.

1.3.2 Profilers

2 x Dual Head Profilers (ST1000's from Tritech) are mounted at the bottom of the machine to display a picture of the COPS bag being laid.

1.3.3 Compass

1 x Fluxgate compass (KVH-C100) with gyroscopic compensation. Data from this sensor is used in one of the telemetry driving modes.

1.3.4 Cable Tracker

1 x "IMPEC 3" Cable / Pipe Tracking System. This system is an active one (tone tracking). It gives to the operator an accurate position of the machine relative to the cable or pipe (accuracy better than 10 cm at midpoint of measuring range). Should be replace by TSS 440 dualtrack.

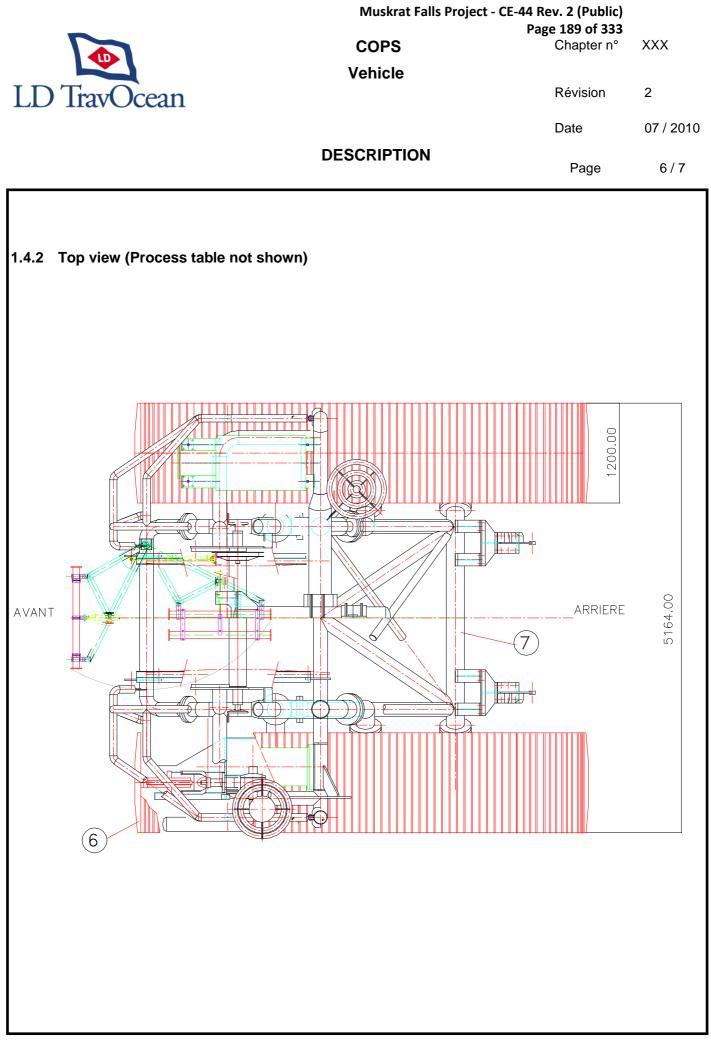
1.3.5 Other Sensors & Accessories

1x Altimeter, 1 x Sensorex SX 42700 Pitch & Roll Sensor, 2 pan & tilt video cameras, 3 fixed video cameras, 1 x speed and laid bag sensor.

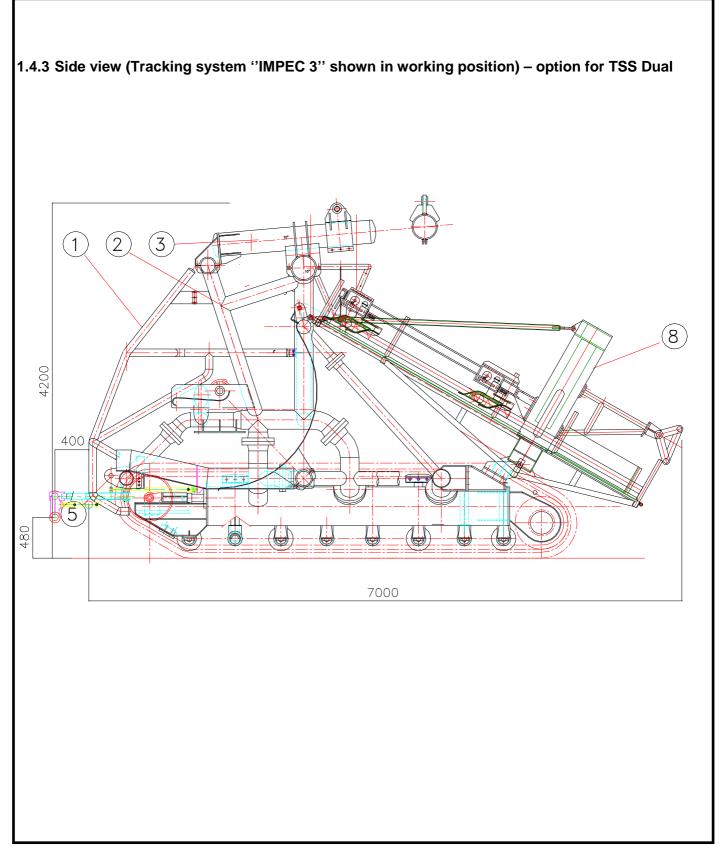
1.3.6 Control / Power Van

The crawler comes complete with a Control & Power Van featuring on one side a power room with power supplies to the different system components and on the other side the control room with its synoptic panel, computerised controls and VCR's.

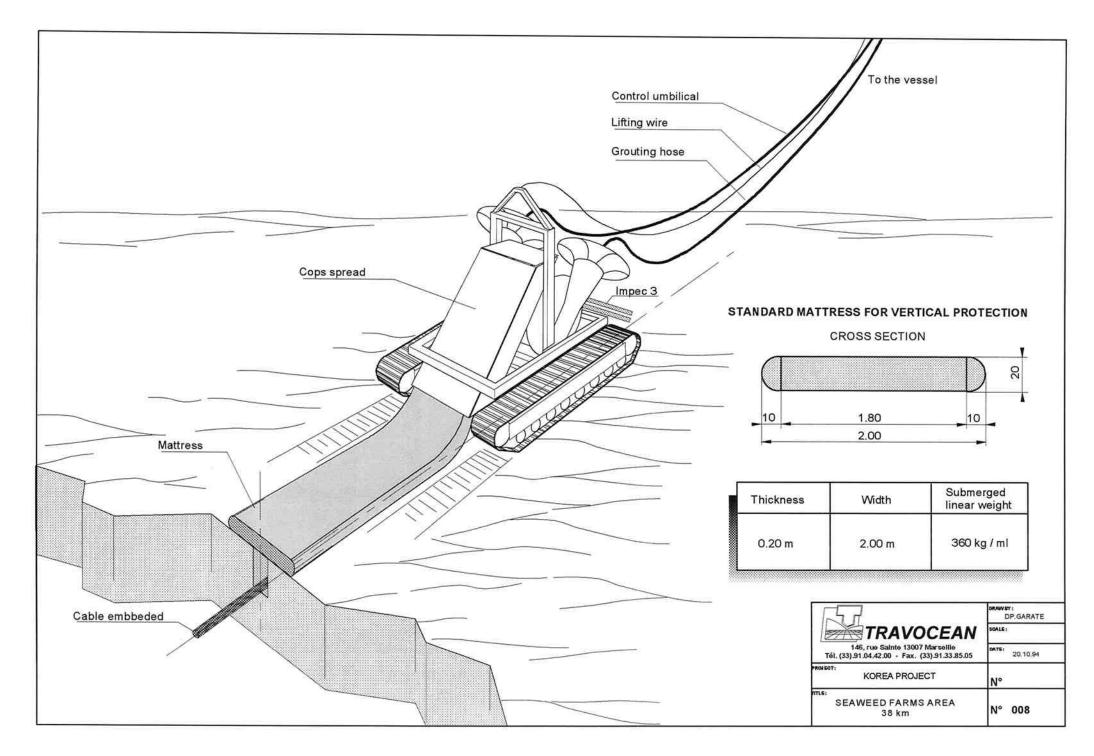
1.3.7 Umbilical Winch and Slip Ring


A containerised winch with its hydraulic power pack provides storage for the umbilical (250m length, pulling load 5T, breaking load 15T, weight in air 3.8 kg/ml, weight in water 1.5 kg/ml, \emptyset 55 mm).

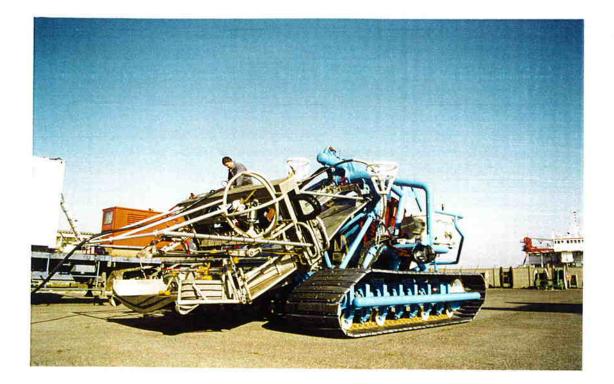
Winch: drum capacity 500m of \varnothing 55mm cable, pulling force 3T with safety brake adjustable between 0.5 and 3T.


Muskrat Falls Project	- CE-44 Rev. 2 (Public)				
	Page 188 of 333				
COPS	Chapter n°	XXX			
Vehicle					
	Révision	2			
	Date	07 / 2010			
DESCRIPTION	Page	5/7			

1.4	Drawings
1.4.1	Front view
2930	



Muskrat Falls Project	- CE-44 Rev. 2 (Public)		
	Page 190 of 333		
COPS	Chapter n°	XXX	
Vehicle			
	Révision	2	
	Date	07 / 2010	
DESCRIPTION	Page	7/7	


Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 191 of 333

300MW HVDC INTERCONNECTION BETWEEN HAENAM AND CHEJU ISLAND CABLE PROTECTION WORK, SEA FARMS & HAING KAN STRAIT - "AS-BUILT" REPORT

- COPS vehicle structure integration in DUNKIRK (2/2)

AB_Rep.doc

(•)

Accurate follow up of the cable to be protected by the laid mattress

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 194 of 333

300MW HVDC INTERCONNECTION BETWEEN HAENAM AND CHEJU ISLAND CABLE PROTECTION WORK, SEA FARMS & HAING KAN STRAIT - "AS-BUILT" REPORT

- 6.2.3 Offshore operations
- 6.2.3.1 Support vessel General views of CSO Alliance

 \bigcirc

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 195 of 333

Appendix R- AHMTEC Cable Protection System

Page 196 of 333

AHM-Pipe 225-500

Technical Specification

Overall segment length Effective segment length Inner diameter minimum Outer diameter maximum Minimum bending radius Typical bending radius

Weight per segment: 14.9 kgWeight per section: 29.8 kgWeight per meter in air: 59.6 kgWeight per meter in seawater: 51.4 kg

	Material	: EN-GJS-400-15 (DIN EN 1563)
	Pipe impact resistance	: > 5 kJ (ISO 13628-1 & Norsok U-001)
	Pipe tensile strength	: > 366 kN
	Abrasions resistance	: Good
)	Corrosion resistance	: Very Good
	Average material loss	: 0.10 mm/year (ISO 11306 & DIN 81249-2)
	Recommended bolt type	: M10 x 50 - 8.8 (ISO 4014 or ISO 4017)
	Recommended nut type	: M10 - 8 (ISO 4032)

: 606 mm

: 500 mm

: 343 mm

: 3.2 m

: 3.5 m

The AHM-Pipe submarine cable protectors are formed out-of two identical half-shells which form a self-locking articulated pipe. Due to its design the AHM-Pipe can be installed in various manners to obtain the protection that submarine cables require. During installation AHM-Pipe can either be fitted directly to the submarine cable and could be floated-out during e.g. shore end installation or can alternatively be installed by divers once the submarine cable has already been laid. Typical installation locations include but are not limited to shore end, subsea crossings and areas with extreme environmental conditions.

AHMTEC GmbH Hafenstrasse 6c D-26789 Leer / Germany Tel.: +49-(0)491-20980500 Fax: +49-(0)491-20980509 Email: info@ahmtec.de Web: www.ahmtec.de

: 225 mm (suitable for cables up to 200 mm outer diameter)

The information contained in this spec sheet is for guidance only and maybe subject to changes.

Appendix S- Vos Product Innovation

Datasheet

Pro-Pipe Cable Clamp Version and date Preliminary 07-04-2010 **Total length** 355 mm **Effective length** 300 mm Total weight (excl. bolts & nuts) 20,5 kg Volume 2,81 | Wall thickness 8 mm Maximum outer diameter 199 mm Minimum inner diameter 130 mm **Clamping range** 96 -110 mm Segment tensile strength 693,7 kN Submerged weight per set¹ 17,6 kg Bolt and nut size Shells M10 Bolt and nut size Clamps M10 EN-GJS-400-15 In accordance with EN 1563 Material 7200 kg/m³ Density **Break elongation** 15 % **Tensile Strength** 400 N/mm²

CC- 130

1) Based on seawater with a density of 1024 kg/m³. The density of seawater varies with temperature and salinity of the water. The information contained within this product sheet is for guidance only and may be subject to change without prior notice.

Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.

Please do not hesitate to ask us for detailed information

Vos Prodect Innovations B.V.

Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

QUICK REFERENCE CHART PRO-CPS

C A			F					6° bend r	estriction		Туріс	al protection s	string
		4	The second seco		///////////////////////////////////////	///////////////////////////////////////	//////	5			1	Landard C	DE2
				<u> </u>	<u> </u>		<u>//////</u>			_	0		
		4					0	6				/	
G	Δ	Е	D						0.0			PRO-CPS500	
PRO-CPS	Minimum	Minimum	Maximum	Individual	Total	Assembled	Mass	Mass	Mass	Maximum	Maximum	Maximum	
Pipe	Inner	Outer	Outer	Working	Overall	Working	per Segment	per Meter	per Meter	Bending	Bending	Cable Outer	
Reference	Diameter	Diameter	Diameter	Length	Length	Length	in Air	in Air	in Water	Angle	Radius	Diameter	
Number	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kg]	[kg]	[[°]	[mm]	[mm]	
	A	В	C C	D	Ē	F						G	
030-250	30	44	98	250	285	1000	1,56	12,48	10,7	6 °	2400	18	
030-500	30	44	98	500	534	1000	1,93	7,72	6,6	6 °	4800	18	1
040-250	40	54	106	250	287	1000	1,70	13,6	11,7	6 °	2400	26	1
040-500	40	54	106	500	536	1000	2,38	9,52	8,2	6 °	4800	26	
055-250	55	71	123	250	290	1000	2,65	21,2	18,2	6 °	2400	40	
055-500	55	71	123	500	539	1000	4,00	16	13,8	6 °	4800	40	
070-250	70	86	137	250	293	1000	3,15	25,2	21,7	6 °	2400	55	
070-500	70	86	137	500	542	1000	4,85	19,4	16,7	6 °	4800	55	F
085-250	85	101	152	250	295	1000	3,65	29,2	25,1	6 °	2400	70	
085-500	85	101	152	500	545	1000	5,70	22,8	19,6	6 °	4800	70	
100-250	100	116	170	250	296	1000	4,45	35,6	30,6	6 °	2400	85	
100-500	100	116	170	500	545	1000	6,80	27,2	23,4	6 °	4800	85	
115-250	115	131	184	250	298	1000	5,50	44	37,8	6 °	2400	100	
115-500	115	131	184	500	548	1000	7,75	31	26,7	6 °	4800	100	
130-250	130	146	199	250	300	1000	5,60	44,8	38,5	6 °	2400	110	
130-500	130	146	199	500	550	1000	8,65	34,6	29,7	6 °	4800	110	
145-250	145	161	214	250	300	1000	6,40	51,2	44,0	6 °	2400	125	
145-500	145	161	214	500	550	1000	9,80	39,2	33,7	6 °	4800	125	
160-250	160	176	228	250	302	1000	7,00	56	48,1	6 °	2400	140	
160-500	160	176	228	500	553	1000	10,70	42,8	36,8	6 °	4800	140	
175-250	175	191	243	250	304	1000	7,65	61,2	52,6	6 °	2400	155	
175-500	175	191	243	500	554	1000	11,70	46,8	40,2	6 °	4800	155	1
190-250	190	206	258	250	307	1000	8,50	68	58,5	6 °	2400	170	_
190-500	190	206	258	500	557	1000	12,90	51,6	44,4	6 °	4800	170	P
205-250	205	221	273	250	311	1000	9,15	73,2	62,9	6 °	2400	185	
205-500	205	221	273	500	561	1000	13,90	55,6	47,8	6 °	4800	185	A
220-250	220	236	288	250	313	1000	9,75	78	67,1	6 °	2400	200	1
220-500	220	236	288	500	563	1000	14,85	59,4	51,1	6 °	4800	200	-
235-250	235	251	303	250	313	1000	10,80	86,4	74,3	6 °	2400	215	С
235-500	235	251	303	500	563	1000	16,25	65	55,9	6 °	4800	215	W
250-250	250	266	319	250	315	1000	11,55	92,4	79,4	6 °	2400	230	-
250-500	250	266	319	500	565	1000	17,30	69,2	59,5	6 °	4800	230	D

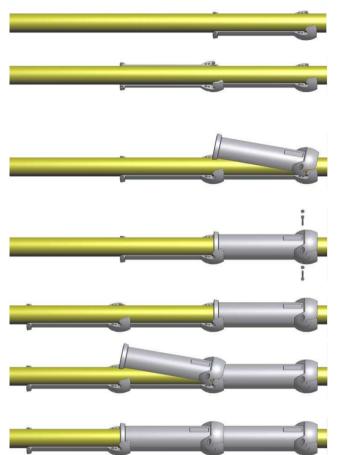
Please do not hesitate to ask us for detailed information

Vos Prodect Innovations B.V.

Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

Pro CPS 500 series

All Pro-Pipe equipment has been tested and checked 100% when delivered to our valued customers


Certification for the chemical or mechanical properties will be supplied upon request.

Datasheets and test reports are available upon request

PRO-Pipe ASSEMBLY INSTRUCTIONS

The PRO-Pipe Cable Protection System is easy to install, as the pieces consist out of two identical half-shells. The clamp ball-end (female) is shaped to receive the stub-end (male).

Step 1:

Place the first shell under the cable.

Step 2:

Place the second shell under the cable by rotating it slightly before placing it on the first one.

Step 3:

Place the first top shell at a 15 degress angle to the left, ensuring the Z-shaped lugs engage. Turn the upper shell towards the cable, until positioned directly over the bottom shell, then lower and engage to the bottom shell.

Secure the first pair with bolts and nuts.

Step 5: Place the third shell under the cable, as in step 2

Step 6: Repeat step 3.

Step 7: Repeat steps 5 and 6.

Pre-casted recesses ensure that the nuts are locked and will not turn during fastening.

Note:

We recommend to secure the PRO-Pipe as follows:

- at the start (first pair)
- at the end (last pair)
- every 10 m (at least)
- using socket head bolts.

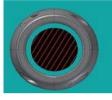
Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.

Please do not hesitate to ask us for detailed information

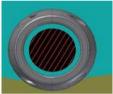
Vos Prodect Innovations B.V.

Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

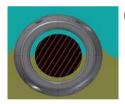
Infosheet



PRO-Pipe SEDIMENT FILL


Infosheet

Using cast iron protectors has a lot of advantages, because:


- Heavy weight
- Very High impact values
- A build in Bend restrictor.
- Quick assembling onto Pipe or Cable.
- Assembling on board or vessel, on shore landing site or assembling by divers.
- Round protectors, no obstacles to hook on or hook to (fishing nets / anchors etc).
- Sediment fill

01 After assembling the Pro-Pipe Cable and Pipe Protectors the assembled string can be placed into position on the Sea / River bottom. As alternative divers can place the protection equipment at site.

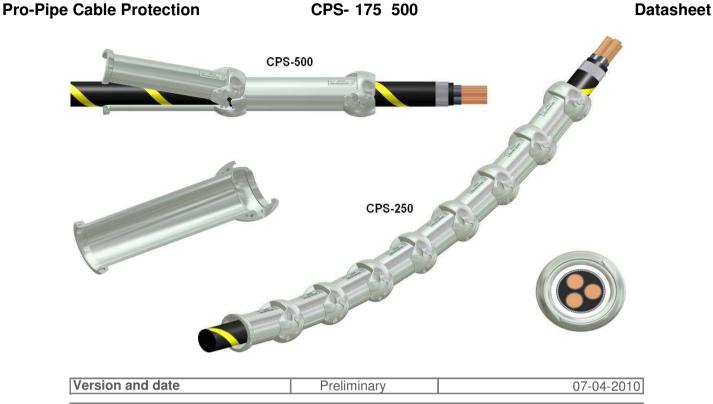

02 The Protector String will sink onto its lowest position on the Sea / River bottom. and will sink into the surrounding sediment (depending of Sea or River-floor conditions). Any movements of the Protector string will be maximized by the bend restriction of the protectors and the total weight of the protector string (incl. sediment, Cable / Pipe and Pipe content).

03 Due to the enlargement of the Cable / Pipe weight, the protector string will sink into the sediment. Because the Protector string has small openings, the sediment also will flow inside the protectors, creating an extra protection layer around the cable or pipe, but protected by the Pro-Pipe Protector. Due to this, the Protector string could be secured for tidal/ wave actions.

04 Depending on the Sea / River floor conditions the Protector string will lower itselves into the sediment, whereas the sediment fills up the protector string, creating an extra Cable / Pipe Protection free of charge. As an extra feature, the sediment will creat a positive influence for any further bending of the Protector string.

05 In certain circomstances the protector string can fully sink into the Sea / River floor, due to weights and the shape of our Pro-Pipe protectors. Any temperature changes (high voltage cables) will be adopted by its surrounding.

Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.


Please do not hesitate to ask us for detailed information

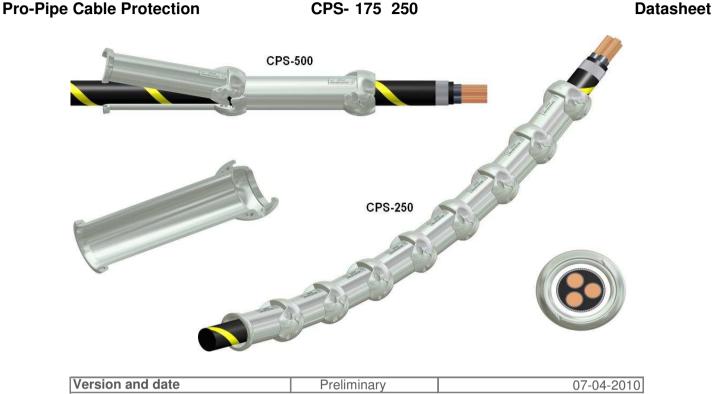
Vos Prodect Innovations B.V.

Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

version and date	Preliminary	07-04-2010
Total length	554 mm	
Effective length	500 mm	
Weight per set	23,4 kg	
Volume per set	3,20	
Wall thickness	8 mm	
Maximum outer diameter	243 mm	
Minimum inner diameter	175 mm	
Maximum cable diameter	155 mm	
Bend radius restriction	4,8 m	
Segment tensile strength	919,9 kN	
Weight per meter	46,8 kg/m	
Submerged weight per meter ¹	40,2 kg/m	
Material		In accordance with EN 1563
Density	7200 kg/m ³	
Break elongation	15 %	
Tensile Strength	400 N/mm ²	

1) Based on seawater with a density of 1024 kg/m³. The density of seawater varies with temperature and salinity of the water. The information contained within this product sheet is for guidance only and may be subject to change without prior notice.

Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.


Please do not hesitate to ask us for detailed information

Vos Prodect Innovations B.V.

 $\label{eq:transform} \begin{array}{l} \mbox{Doorndistel 1, 7891 WV Klazienaveen, The Netherlands} \\ \mbox{T +31 (0)591 315600} \cdot \mbox{F +31 (0)591 317828} \cdot \mbox{E info} \\ \mbox{evos-prodect.com} \end{array}$

Version and date	Preliminary	07-04-2010
Total length	304 mm	
Effective length	250 mm	
Weight per set	15,3 kg	
Volume per set	2,09	
Wall thickness	8 mm	
Maximum outer diameter	243 mm	
Minimum inner diameter	175 mm	
Maximum cable diameter	155 mm	
Bend radius restriction	2,4 m	
Segment tensile strength	919,9 kN	
Weight per meter	61,1 kg/m	
Submerged weight per meter ¹	52,5 kg/m	
Material		In accordance with EN 1563
Density	7200 kg/m ³	
Break elongation	15 %	
Tensile Strength	400 N/mm ²	

1) Based on seawater with a density of 1024 kg/m³. The density of seawater varies with temperature and salinity of the water. The information contained within this product sheet is for guidance only and may be subject to change without prior notice.

Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.

Please do not hesitate to ask us for detailed information

Vos Prodect Innovations B.V.

 $\label{eq:transform} \begin{array}{l} \mbox{Doorndistel 1, 7891 WV Klazienaveen, The Netherlands} \\ \mbox{T +31 (0)591 315600} \cdot \mbox{F +31 (0)591 317828} \cdot \mbox{E info} \\ \mbox{evos-prodect.com} \end{array}$

Datasheet

Pro-Pipe Tube Centraliser TC 175 xxx

Version and date	Preliminary	18-06-2010
Segment length (total)	- mm	On request, depends on tube Ø
Weight per set	- kg	On request, depends on tube Ø
Volume per set	-	On request, depends on tube Ø
Maximum outer diameter	- mm	On request, depends on tube \emptyset
Minimum inner diameter	165 mm	
Minimum inner tube diameter	- mm	On request, depends on tube Ø
Submerged weight per set ¹	- kg	On request, depends on tube Ø
Bolt and nut size	M10	
Material PU	PU shore 80A	
Density PU	1250 kg/m ³	
Break elongation	550 %	
Tensile Strength	60 N/mm ²	

1) Based on seawater with a density of 1024 kg/m³. The density of seawater varies with temperature and salinity of the water. The information contained within this product sheet is for guidance only and may be subject to change without prior notice.

Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.

Please do not hesitate to ask us for detailed information

Vos Prodect Innovations B.V.

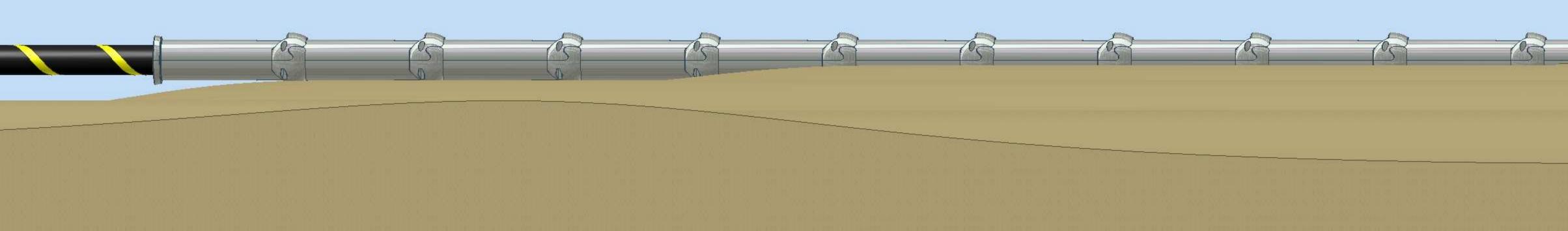
Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

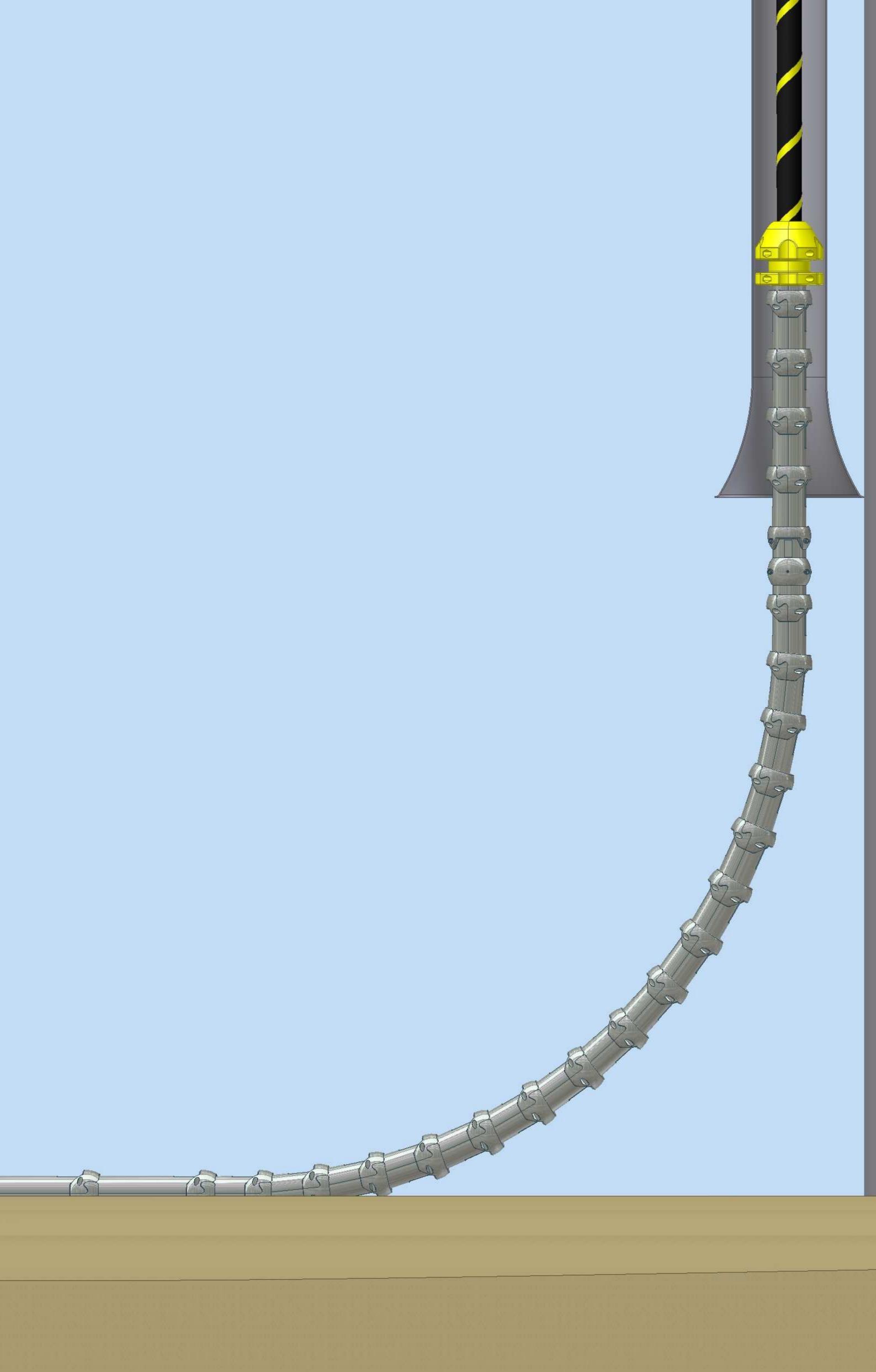
Pro-Pipe Cable Clamp

Datasheet

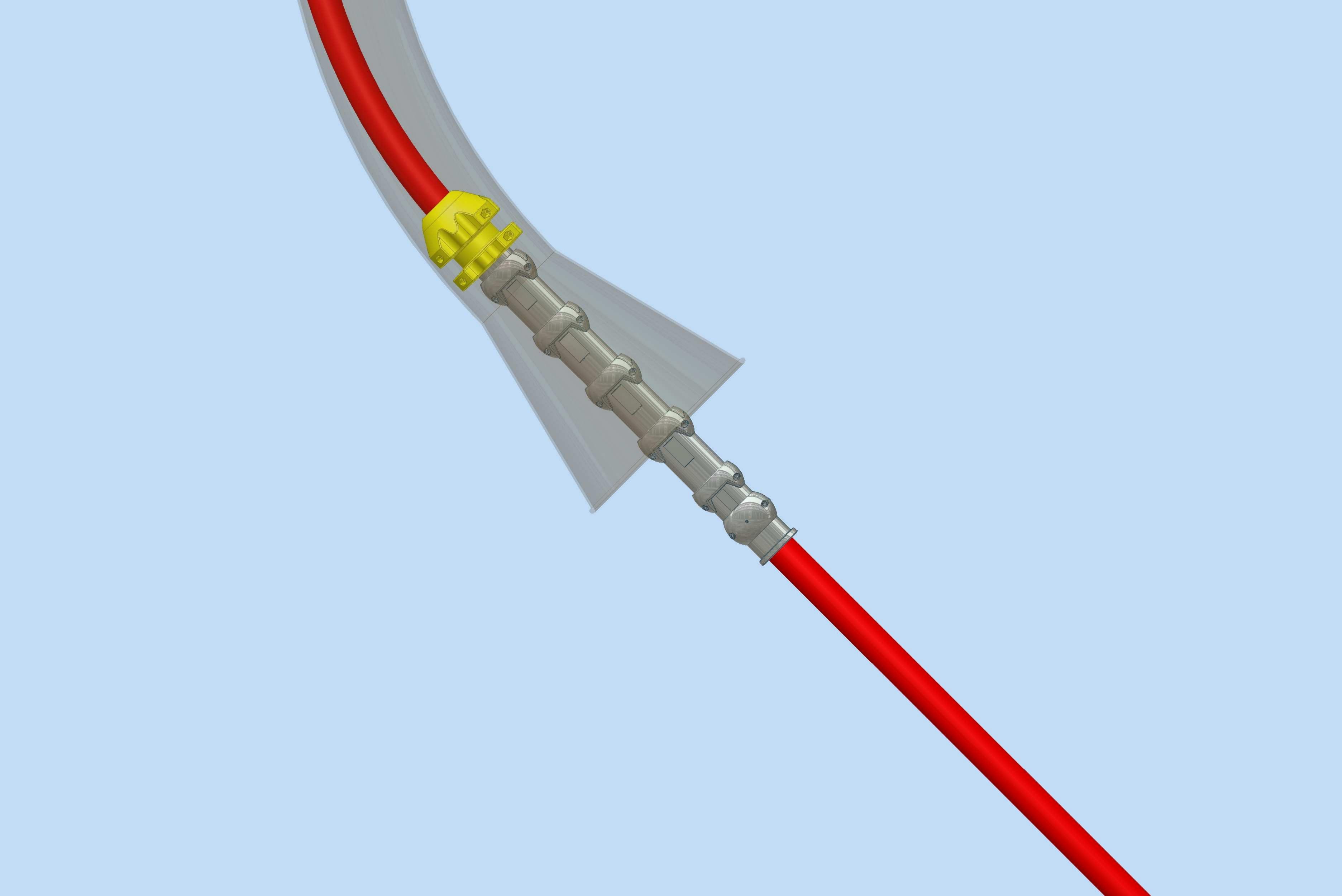
Version and date Preliminary 07-04-2010 **Total length** 409 mm **Effective length** 350 mm Total weight (excl. bolts & nuts) 29,6 kg Volume 4.05 | Wall thickness 8 mm Maximum outer diameter 243 mm Minimum inner diameter 175 mm **Clamping range** 141 -155 mm Segment tensile strength 919,9 kN Submerged weight per set¹ 25,4 kg Bolt and nut size Shells M10 Bolt and nut size Clamps M10 EN-GJS-400-15 In accordance with EN 1563 Material Density 7200 kg/m³ Break elongation 15 % **Tensile Strength** 400 N/mm²

CC- 175


1) Based on seawater with a density of 1024 kg/m³. The density of seawater varies with temperature and salinity of the water. The information contained within this product sheet is for guidance only and may be subject to change without prior notice.


Pro-Pipe submarine cable & pipe protectors can be installed in various ways to obtain the protection that submarine cables and pipes require. During installation the Pro-Pipe can be fitted directly to the cable or pipe before floating the cable in. The Pro-Pipe can also be post-lay installed by divers. As a remedial protection the Pro-Pipe can also be installed on the beach or even offshore at locations of crossings or aggressive seabed conditions.

Please do not hesitate to ask us for detailed information

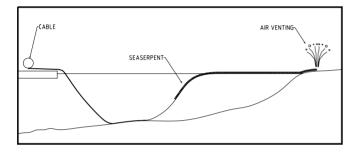

Vos Prodect Innovations B.V.

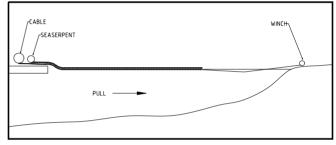
Doorndistel 1, 7891 WV Klazienaveen, The Netherlands T +31 (0)591 315600 · F +31 (0)591 317828 · E info@vos-prodect.com

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 206 of 333

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 207 of 333

Appendix T- Serpent Cable Flotation System


SEAFLEX FLEXIBLE BUOYANCY


THE CONTROLLED WAY TO INSTALL CABLES IN SHALLOW WATER

Instead of using multiple floats to support a submarine cable during installation in shallow water, the SeaSerpent is a continuous inflatable tube attached to the cable at 1m spacing. While its support and control of the cable is excellent, perhaps its most advantageous characteristic is the operational flexibility it allows the installer.

Supplied in 'lay flat' form on a transport, deployment, recovery (TDR) drum the tube is inflated as it unwinds and is attached to the cable just before the launch point. This allows rapid and near continuous deployment.

When the correct length of cable is afloat and positioned accurately on its line, the air is vented from one end of the tube allowing the cable to sink progressively into the desired position. This sinking process is under complete control and may be slowed, stopped or reversed at will.

The form stiffness developed by the SeaSerpent decreases kinking tendencies and eliminates sagging between floats and the requirement to keep constant tension on the cable. This characteristic, coupled with the unrivalled control of the sinking process, allows installers much greater flexibility in procedures. It is for instance possible to park the cable on the bottom during adverse tidal periods and re-float it when required, or tow sections of cable to installation sites several kilometres from the launch point.

The SeaSerpent eliminates losses of individual buoyancy units and saves a huge amount of space and manpower at the launch point. With only $1.5m^2$ of deck space required for 1km of buoyancy, the SeaSerpent offers significant savings in transport, storage and replacement costs as well as the operational advantages of speed and control.

Seaflex can manufacture SeaSerpent for individual buoyancy requirements although most cable weights are applicable to Seaflex's Standard Range. The table shows Standard Range SeaSerpent specifications. SeaSerpent and ancillary transport, deployment and recovery systems are available for hire or purchase.

Since 1996 Seaflex Limited have been certified to ISO9002 by Lloyds Register Quality Assurance for - 'The manufacture, repair and hire of heavy duty flexible load bearing structures, primarily air lift bags and fluid storage tanks'.

TYPE	Buoyancy	Lay Flat Width	Inflated dia.
	(kg/m)	(mm)	(mm)
2650/9/30	6	141	90
2650/8/25	8	160	102
2650/7/20	10	182	116
2650/6/15	13	213	136
2650/5/15	20	259	164
2650/4/12	33	320	205
2650/3/10	60	435	280
2650/2/6	130	650	420

SEAFLEX LTDSAMUEL WHITESCOWESISLE OF WIGHTPO31 7RAUNITED KINGDOMTelephone: +44 1983 290525Fax: +44 1983 295853Email: info@seaflex.co.ukWebsite: www.seaflex.co.ukThe intellectual content of this document is the copyright of Seaflex Ltd. Contents are accurate at time of going to press, but may change without notice

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 210 of 333

Appendix U- Cable Laying Vessel Specifications

Owner	Prysmian			
Contractors:	Pirelli/Prysmian			
	Specifications:			
MAIN DIMENSIONS & PERFORMANCE				
Length Overall	133.18 m			
Moulded Breadth	30.48 m			
Draft at max load (operating four	8.50 m			
thrusters)				
Moulded Depth	7.62 m			
Loaded Draft Summer Freeboard	5.197 m			
Summer Freeboard	1.79 m			
Deadweight Tonnage	8,840 tons			
Gross Tonnage	10,617 tons			
Net Tonnage	3,185 tons			
Deck Strength Uniform Loading	9.28 tons/m ²			
Max speed	10 knots			
Bollard pull	100 tons			
Light weight	8,004 tons			
	OPULSION & MACHINERY			
The vessel is powered by five Daihatsu diesel gen sets running on gasoil				
Diesel Engines	Daihatsu 6 DV 22A V12 2,200 BHP at 1,000 RPM			
Generators	Fuji 1500 KW 600 Volt GFV 563ZB-6Z Emergency/Harbour			
	Generator			
Engine type	Caterpillar 3508 DITA (Marine) 1500 RPM			
Generator	Hyundai Electrical Engineering HFC 3-454-4 500 KVA			
Power Supply	600 Volt - 50 Hz for Propulsion			
	440 Volt - 50 Hz for General Board Network			
	220 Volt - 50 Hz for user supplies			
Aft	Two Schottel Lips Azimuth Fixed Pitch Thrusters with			

Type Forward	1500/1000 ZS driven by Fuji Electric Motors 1000 RPM, 1250 kW, 600 Volt direct current.Speed control by SCR type Two Retractable Schottel Lips Azimuth Fixed Pitch Thrusters
	with Propellers in Nozzles.
Туре	S 1000 LSV driven by Fuji Electric Motors 720 RPM, 1250 kW, 600 Volt direct current Speed control by SCR type
Bulb	Tunnel thruster
Туре	Kamewa TT 1650 K/BMS-CP 710 kW, 380 V, 50 Hz.
	MIC POSITIONING SYSTEM
Giulio Verne is equipped with a DP	SIMRAD SDP 21
	O AND FUEL CONSUMPTION
Transit Speed	9 knots in good sea and wind conditions
Maximum Speed	10 knots
Consumption in transit	15 - 20 tons/day
Consumption in DP operations	7 - 11 tons/day
Consumption in port	2 tons/day
	ACITY AND AVAILABLE DECK AREA
Total cargo capacity is approximately 8,0	JUU TONS. :
The turntable has a maximum capacity of	
On the main deck, ahead from the turnt	able, an area of about 500 m ² is available, in which a cable
Fresh water	650 tons
Gas Oil	650 tons
Freezer Room -18°C 26 m ³	FRIGERATION STORAGE
Vegetable Room +4°C 17 m ³	
Dry Provision 50 m ³	
	ACCOMMODATION
Crew	18 - 40
Technicians and Representatives	50 max
Total	90
The ship is anyway certified for 96 peop	
Hospital with two beds	
Two Clients offices	
One Officer lounge Two Crew/General lounges	
Two Crew/General lounges	
Two Crew/General lounges HE/	ATING AND VENTILATION
Two Crew/General lounges HE/ Accommodation and laying-testing cont	rol rooms are air-conditioned
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/	rol rooms are air-conditioned AVIGATION EQUIPMENT
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.)	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar One - Hydrographic Echo Sounder	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T SIMRAD EA500
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar One - Hydrographic Echo Sounder One - Echo Sounder	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T SIMRAD EA500 One - Echo Sounder JRC Type NJA 178 S
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar One - Hydrographic Echo Sounder One - Echo Sounder One - Echo Sounder	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T SIMRAD EA500 One - Echo Sounder JRC Type NJA 178 S Kelvin Hughes Type MS 50
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar One - Hydrographic Echo Sounder One - Echo Sounder One - Echo Sounder One - Doppler Log	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T SIMRAD EA500 One - Echo Sounder JRC Type NJA 178 S Kelvin Hughes Type MS 50 One - Doppler Log JRC type JLN 203
Two Crew/General lounges HE/ Accommodation and laying-testing cont N/ One - Radar (also A.R.P.A.) One - Radar One - Hydrographic Echo Sounder One - Echo Sounder One - Echo Sounder	rol rooms are air-conditioned AVIGATION EQUIPMENT Kelvin Hughes 3 cm (Band X) Nucleus 6000 A Kelvin Hughes 10 cm (Band S) Nucleus 5000 T SIMRAD EA500 One - Echo Sounder JRC Type NJA 178 S Kelvin Hughes Type MS 50

One - VHF Radiotelephone	Furuno VHF FM 8500 (DSC)		
One - Weather Facsimile	JRC Type Jax 9A		
One - Autopilot	Incorporated into DP System		
Two - GPS	Trimble 4000 DS		
Two - Gyro Compass	Sperry Type SR 220		
One - Gyro Compass	Brown		
	IMUNICATION EQUIPMENT		
One - VHF Transceiver	Furuno FM 8500 (DSC)		
One - SSB Transceiver	Furuno FS 1562-15		
One - MF DSC terminal receiver	Furuno MF DSC-6A		
One - Satellite tel/facsimile	Canon Fax-B-150		
Two - Inmarsat C	Furuno Type PIB581		
Two - Inmarsat C	teleprinter Furuno PP-510		
One - Inmarsat B	Furuno Felcom 81		
One - Inmarsat B	teleprinter Furuno PP-510		
One - Navtex Receiver	Marac Navtex Tel. 100		
	AFETY AND OTHER EQUIPMENTS		
Three GMDSS Emergency VHF Sailor			
One Sarsart Cospas (Epirb) Jotron Tron 3	30S MK2		
	One Fire Detection System Autronics		
One Fire Detection System Notifier AFP	200		
Two Radar Trasponder Jotron			
Wind Measurement System (2 Sets inco	rporated into DP System)		
Doppler Log			
Electronic Fog Bell and Gong System			
Four totally enclosed lifeboats, 50 perso	LSA EQUIPMENT		
Maker	Watercraft (totally enclosed, equipped in accordance with		
Four liferafts			
Type	Viking DK (for 12 persons with emergency pack)		
Four liferafts	Viking DK (101 12 persons with emergency pack)		
Туре	Pirelli Londra 86 (for 16 persons with emergency pack)		
CAPSTA	ANS AND MOORING WINCHES		
Three electric capstans of 6 tons capacit			
Mooring winches			
	Four single drum waterfall winches with 50 tons pull on step		
Forward	1, 25 tons pull on step 2.Up to 1200 meter of 52 mm wire.		
	One winch each side classed as a windlass.		
Winch type	Norwinch 1S-50-1T		
Static load Max	150 ton		
Total Brake Torque	52,650 kgm		
Winch pull, step 1	50 tons 1st wrap - 16.25 ton·m		
Winch pull, step 2	25 tons 1st wrap - 8.125 ton m		
	Drum diameter 650 mm		
Winch barrel dimensions	Drum width 1250 mm		
	Flange diameter 2000 mm		
	Flange depth 675 mm		
Nominal capacity	Flange depth 675 mm1200 meter of 52 mm wire		

	Two double drum waterfall winches with 80 tons pull using	
Aft	both motors onto one drum, 40 tons pull using one motor	
	on each drum. 1200 meter of 52 mm wire.	
Winch tune		
Winch type Static load maximum	Norwinch 2S-80-2T	
Winch pull (2 into 1	150 ton - 1st wrap	
Winch pull (1 into 1	80 ton 1st wrap- 28.4 ton·m	
	40 ton 1st wrap - 14.2 ton·m Drum diameter 710 mm	
	Drum width 1500 mm	
Winch Barrel dimensions	Flange diameter 1850 mm	
	Flange depth 570 mm	
Nominal capacity	1200 meter of 52 mm wire	
	CRANAGE	
	Hook capacity 25 tons at 22 metres; revolving capacity on	
	One Electric 2 tons Store Davit next to accommodation	
Four Asea cranes		
	starboard side	
	One Sormec crane 13 tons at 6 m	
	ANCHORS	
Eight Flipper Delta Anchors of 7 tons eac		
	BLE LAYING EQUIPMENT	
ST	ARBOARD LAYING LINE	
Pick-up arm	Fitted with motorised wheels	
	3 m bending radius	
DOHB machine	Caterpillar type	
	Maximum pulling tension 5 tons at 2 knots in laying mode	
	6 m diameter	
	Laying performance:	
	50 tons at 2 knots	
Capstan	20 tons at 5 knots	
	Recovering performance:	
	50 tons at 0.5 knots	
	20 tons at 1 knot	
Auxiliary machine	Caterpillar type	
,	Maximum pulling tension 2 tons (seaward)	
Stern sheave	6 m diameter	
	Fitted with dynamometer for max 50 tons	
	PORTSIDE LAYING LINE	
Pick-up arm	Fitted with motorised wheels	
Linear machine	3 m bending radius	
	Maximum pulling tension 10 tons in laying/recovering 6 m diameter	
Stern sheave		
	Fitted with dynamometer for max 20 tons 7000 TONS TURNTABLE	
Carousel outer diameter 25 m		
Carousel inner diameter 6 m		
Carousel height 4 m (extendible to 4.5 m		
Maximum linear speed at inner diamete		
	ED CABLE STORAGE AREA	
	lable where a fixed platform for coilable cables can be	
	ximum capacity is approx. 2500 tons of cable	
Inc maximum ulameter is 19 m, the ma	Annum capacity is approx. 2000 tons of table	

CABLE BURIAL EQUIPMENT
One of the Pirelli ploughs is usually on board, positioned on a suitable structure in the aft area of the
MISCELLANEOUS
Rubber boats for cable pulling and landing
Stoppers - ropes, wires, etc.
Cable jointing equipment
Electrical test equipment
Measuring system for optical cable (power meter, back scattering, etc.)
HELIDECK
The Helideck is mounted forward on top of the bridge and has been approved suitable for a
having a maximum take-off weight equal to 5080 kg.
PROJECTS
Trans Bay Cable
Basslink
Spain-Morocco II
Itialy-Greece
Neptune
Cometa

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 216 of 333

Owner	Nexans		
Contractors:	Nexans		
	Specifications:		
MAIN DI	MAIN DIMENSIONS & PERFORMANCE		
Length oa including laying wheels	106.00 m		
Breadth moulded	32.15 m		
Depth moulded	8.00 m		
Draft an max deadweight with bow	8.13m		
Deadweight	7886 t		
Ballast capacity	4400 t		
Vessel speed	10 kts		
Classification	DNV 1A1 Cable Laying Vessel E0 DYNPOS-AUTR		
	PULSION & MACHINERY		
Power generation	4 x 500 kVA		
	1 X 600 kVA		
Stern thrusters	2 x 1943 kW (2640 HP) azimuth units		
	1 X 1000 kW (1360 HP) azimuth unit		
Bow thrusters	1 x 1820 kW (2475 HP) retractable azimuth unit		
	1 x 957 kW (1300 HP) tunnel unit		
	MIC POSITIONING SYSTEM		
NMD/IMO class	2		
ERN	99.99.99		
Туре	Simrad ADP-503		
Reference systems	2 x DGPS		
	1 x tracking USSBL transducer		
	1 x Artemis mk III		
	1 x Fanbeam (Optional)		
	CITY AND AVAILABLE DECK AREA		
Main turntable	Outer diameter : 29 m		
	Inner diameter : 12 m		
	Load capacity : 6600 t		
Deck area	Approx. 650 m^2		

Deck capacity	10 t/m^2
	ACCOMMODATION
Single cabins	49
Hospital (Single)	
	APSTANS AND MOORING WINCHES
A & R winches	2 x 30 t SWL linear winches
Stern cherry pickers	2 x hydlaulic manriding cherry
Cable capstan system	Cable capstan with linear engine. 50 t
Total pull/breaking capacity : Maximum laying speed :	50 t 50 m/min
Maximum laying speed .	CRANAGE
A-Frame	40 t SWL
Main crane forward	20 t SWL
Aft deck crane	3 x 5 t SWL
	CABLE LAYING EQUIPMENT
Laying wheels	1 x 10 m diameter stern wheel
- , 0	1 x 5 m diameter stern wheel
Cable guiding	Complete guiding of cable
	from turntable to laying wheel.
	Guiding minimum radius : 5 m.
Laying instrumentation	Computer based laying control
	system with the
	following input sensors:
	2 x lay speed/length sensors
	1 x lay wheel load sensor
	1 x cable top angle sensor
	1 x high accuracy echo sounder
	Plus depth and position of ROV
	during touch down monitoring.
ROV	ARGUS Mariner XL
Trenching (Option)	The vessel can carry Capjet 1 MV trenching
	units for burial operations MISCELLANEOUS
	Cable repair equipment
Splice area	A 3 x 15 meter, enclosed area is purpose designed for
	performance of High Voltage cable repair.
	All required equipment for splicing can be accommodated
Cable splice eq.	with ready connections to ship utilities
	· · · · · · · · · · · · · · · · · · ·
Cable handling eq.	Main equipment for cable handling during a repair is
	permanently stored onboard
	The vessel can be fitted with further equipment from our
	cable handling tool pool. Thus the vessel can perform :
Other	*Cable repair including subsea cutting and retrieval of
	damage sections. *Simultaneous laying of two cables with
	controlled separation. *Piggyback laying
	Availability:
Availability:	Booked couple year waiting list (3 years Approx)

PROJECTS
Skagerrak 1&2
FennoSkan
FennoSkan2
Cook Straight
Skagerrak3
Moyle
NorNed
SAPEI
BP Valhall
COMETA
London Array (windfarm) (XLPE)
Lincs (windfarm) (XLPE)
French Island (La Reunion in the Indian Ocean) (XLPE)
Sheringham Shoal (windfarm)(XLPE)
Islands in Krabi (Southern Thialand) (XLPE)
Spanish Mainland - Balearic Island (Cometa Cable)
Hainan Island -Chinese Mainland (Oil Filled)
Wolfe Island(XLPE)
Horns Rev 2 (AC XLPE)
Abu Dhabi-Delma Island
Long Island Replacement (XLPE)

Team Oman			
A not			
	Land the work of the second se		
	TEAN OWAN		
Owner	Nico Middle East		
Contractors:	Oceanteam		
	Specifications:		
	DIMENSIONS & PERFORMANCE		
Type:	DP II Cable and		
Year Built / Builder:	1999, De Hoop B.V., Lobith,		
Port/No of Registry	Kingstown J8B2641		
Call Sign : Class:	DNV+1A1 Cable lay vessel DYNPOS AUTR		
Length Overall	86.00 m		
Breadth Moulded	24.00 m		
Depth Moulded	5.50 m		
Draft Loaded	4.50 m		
Freeboard	1.013 m		
Deadweight	5320 tonnes		
Registered Tonnage	4073 tonnes		
с с	NRT 1221 tonnes		
	PROPULSION & MACHINERY		
Main Engines	4 x CAT. 3512 DITA 1445 kW		
	each at 1800 rpm		
Main Propulsion	2 x electric driven Azimuth thrusters		
Stern Thrusters	make Schottel type SRP 1212 FP with		
	fixed pitched propellers, 1200KW each 1 x 1200 kW retractable Azimuth		
Bow Thrusters	1 x 1100 kW Tunnel Thruster		
	4 x Leroy Somer, LSA 51L9		
Auxiliary / Generators	60 Hz, 480 V, 1800 kVA each		
Emergency Generator	1 x 219 kVA 175 kW – 238 HP		
Sewage Treatment Plant	Aquamar Bio-Unit Mod. MSP III		
Oily Water Seperator	DVZ – VL		
DY	NAMIC POSITIONING SYSTEM		
ND System	Alstom Cegelec		

Ur system	DPS 902 Duplex
	Cegelec 900 series
Joystick	forward & aft control
SPEED	AND FUEL CONSUMPTION
Max Speed	Approx. 10 knots
Economical Speed	Approx 8 knots
Fuel Consumption	Appox. 10 ton/day
CARGO CAPA	CITY AND AVAILABLE DECK AREA
	RN TABLE / 4800 Tonnes
Inside diameter	8 m
Outside diameter	24 m
Height	4 m
Surface ring	379 mC
Volume of ring	1515 mD
Turn table Speed	2 rpm max
	TATIC COIL (Optional)
Outer Diameter	15m
Inner Diameter	4 m
Deck Cargo Capacity	5000 tonnes
Clear Deck Area	61 x 24 m. 1464 mC
	TANK CAPACITY
Fuel Oil	545 mD
Fresh Water	2900 mD
	FRIGERATION STORAGE
Refrigerator / Freezer	2 x 28 mD each
	ACCOMMODATION
Crew + Catering	Abt. 18 + 5
Passengers	Abt. 33
NA	VIGATION EQUIPMENT
Magnetic Compass	1 x Datema
Gyro Compass	Sperry SR 180 MK 1
Gyro Repeaters	2 x C Plath
Auto Pilot	2 x Alstom
	1 x Furuno FAR 2815
Radars (ARPA)	1 x FR-2135 S
Radars (ARPA)	
	1 x FR-2135 S
Radars (ARPA) Echo Sounder	1 x FR-2135 S and FMD-8010
	1 x FR-2135 S and FMD-8010 Furuno FE 606
Echo Sounder	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210
Echo Sounder Depth Indicator Navtex Receiver	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222
Echo Sounder Depth Indicator	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 VUNICATION EQUIPMENT
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod COMI GMDSS Station	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 VUNICATION EQUIPMENT 1 x Furuno Area 3
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod COMI GMDSS Station SSB	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 VUNICATION EQUIPMENT 1 x Furuno Area 3 1 x Furuno
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod COMI GMDSS Station SSB VHF (4)	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 MUNICATION EQUIPMENT 1 x Furuno Area 3 1 x Furuno Furuno
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod COMI GMDSS Station SSB VHF (4) Satellite Phone / Fax Inmarsat	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 VUNICATION EQUIPMENT 1 x Furuno Area 3 1 x Furuno Furuno Nera
Echo Sounder Depth Indicator Navtex Receiver GPS Doppler Speed Lod COMI GMDSS Station SSB VHF (4) Satellite Phone / Fax	1 x FR-2135 S and FMD-8010 Furuno FE 606 Navisound – 210 Furuno ED 222 1 x Furuno NX 5000 1 x Leica K 10 DGPS 1 x Garmin GPS-128 Furuno DS 70 VUNICATION EQUIPMENT 1 x Furuno Area 3 1 x Furuno Area 3 1 x Furuno Furuno Nera Satcom B, C

BRIDGE, SAFETY AND OTHER EQUIPMENTS			
Fire Extinguisher	20 x COc, 12 x Foam,		
	10 D/P		
Emergency Fire / Pump	1 x 50 mD/hr		
Fixed CO2	Flooding System in		
	Generator Room		
	LSA EQUIPMENT		
Life rafts	8 x 15 persons		
Rescue / Workboat	6 persons		
CAPSTAI	NS AND MOORING WINCHES		
	4 x electric self		
4 Point Mooring system	tensioning winches		
+ Forme Woorning System	2 x 60 tonnes		
	& 2 x 48 tonnes		
Anchors	2 x 3.5 tonnes		
Anchors	& 2 x 2.5 tonnes		
Capstans	2 x 10 tonnes		
	electric driven		
Bollard Pull	40 M tonnes		
	CRANAGE		
Deck Crane	15 tonnes		
	26.5 m reach		
A- Frame	24 tonnes SWL		
Supply Crane	4 tonnes		

Cable Innovator			
ERE INVOLUTION			
Owner Contractors:	Global Marine Global Marine		
MAIN DI	Specifications: MENSIONS & PERFORMANCE		
Type of Ship	Cable Ship		
Builders	Kvaerner Masa Shipyard, Turku, Finland 1995		
IMO Number	9101132		
ABS I.D.	95146744		
Call Sign	MVEP4		
Port of Registry	London		
Length Overall	145.50 metres		
Length Between Perpendiculars	124.12 metres		
Breadth Moulded	24.00 metres		
Depth Moulded (to Deck 3)	13.5m metres		
Designed Draft	8.30 metres		
Deadweight	10557 tonnes		
Summer Draft	8.517 metres		
Gross Registered Tonnage	14277 tonnes		
Net Registered Tonnage Suez Tonnage	4283 tonnes 15619.1 tonnes		
Panama Tonnage	11977 tonnes		
Classifications	Cable Layer. A1, AMS, ACCU, DPS-2		
	PROPULSION & MACHINERY		
Main Engines	3 xWARTSILA 9R32E @ 3645kW		
Auxiliary Engines	2 xWARTSILA 6R22/2E @ 975 kW		
Thrusters	-1 x Bow Thrust - White Gill GEC Elliot 70T3S - 24t -1 x Bow Thrust - Tunnel - KAMEWA - 16t, provides excellent manoeuvring capabilities		
	- 2 x Stern tunnel - KAMEWA - 12t each		
Auxiliary Services	None		

Switch boards	3.3 kV Main Switchboard, 440v / 60 Hz distribution
Emergency generator	1 x CUMMINS 350kW
	YNAMIC POSITIONING SYSTEM
Dynamic positioning system	Converteam DPS A-Series - Version 4 (Duplex)
	PEED AND FUEL CONSUMPTION
Fuel Consumption in Port	4t/day
Fuel Consumption Cable Laying	10-18t/day
Fuel Consumption Economic	16t/day
Fuel Consumption Transit	12 knots @17-27t/day dependent upon load/weather
Fuel Consumption Max Speed	35t/day
Maximum Bunker Capacity	1662 tonnes
	Normal 42 days at sea and with logistical can be extended
Endurance	
	to approx. 60 days
	Economic Speed: 10 Knots
Speed:	Service Speed: 12 Knots
	Max Speed: 16.9 Knots
	CAPACITY AND AVAILABLE DECK AREA
Main cable tanks	3
Internal Diameter	16.7m
Cone Outter Diameter	3.5-3.1 (Tapered)
Tank Height	9.4m
Cone height	7.2m
Maximum load per tank	2333 tonnes Nominal
Tank Top Loading	14 tonnes/square meter
Volume Of Cable Tankes	1808 m^3
Spare Cable Tanks	1
Internal Diameter	8.8m
Cone Outter Diameter	2m
Tank Height	9.2m
Max Load per Tank	500 tonnes
Volume Of Spare Tank	323 m^3
	TANK CAPACITY
Fresh Water Capacity	1322.8 tonnes
Fresh Water Usage	16-20 tonnes/day
Fresh Weter Constitut	2 x ALPHA LAVAL JWP-26-C80 20 tonnes/ day dependent
Fresh Water Generation	upon engine load condition.
	ACCOMMODATION
Total Berths	80
Officer Cabins	42
Crew Cabins	36
Representative Suites	2
Hospital	2 beds
	TION & COMUNICATION EQUIPMENT
Radars	9800 ARPA and SAM Electronics NG3028
	1 x Trimble + Probeacon DGPS
GPS	2 x JAVAD + Varipos DGPS
	1 x Fugro 90938 + Redbox Starfix DGPS
Infrared-laser	1 x Cyscan
	2 x Sperry Mk37
Gyro Compasses	1 x SG Brown TSS Meridian Standard

Magnetic Compasses	JC Krohn MOD390
Control Unit Auto pilot	Trackpilot Atlas 1100
Rudder angle indicator	Yes
Navtex	JRC NCR 300A
	2 x Simrad EA 500 (Deep water), 1 x Simrad EN 200
Echo Sounder	(Shallow water)
	- Joystick Manual/Auto Heading
	- Duplex DP
	- Auto Track
Modes of Operation	- Min Power
	- ROV Follow
	- Plough/Trencher High Tension Slow Down
	Mixed Manual / Auto mode
	Auto Heading / Positioning
	Thruster Allocation / Control
	Power Load monitoring Blackout Prevention
Stand by mode	Trainer / Simulator Mode
	Alarm System
	Auto Track (high speed) / Auto Track (low speed)
	Follow Target mode / ROV follow
	Cable Laying / Trenching
Fire Alarm	Consilium
GMDSS	JRC
	1 x SAT B - NERA
	1 x SAT C - SAILOR DT 4646E
	1 x SAT C - JRC NDZ-127C
Sat-Com	MF/HF - SAILOR HC4500B
	VHF - JRC JHS-31
	JUE - 45A JRC
	1 x SEA-TEL KU BAND VSAT
A Frama	35 tonne SWL (Sea State 5)
A Frame	Plough tow winch SWL 100T
	1 x Forward (Hydralift) 2.0T @ 10.0m
	1 x Forward (Hydralift) 5.0T @ 10.0m
Cranes	2 x Aft (Manufacturer Hydra lift)
	10T @ 8.0m, 2T @ 18.5m
	Tugger Winches 4 x 2T SWL
	CABLE LAYING EQUIPMENT
LCE	21 wheel pair Linear Cable Engine (Dowty)
Cable Drum	Electrically driven cable drum with fixed angled pay out
Diameter	4m
Pull Load	40 tonnes/ knot
Brake Load	40 tonnes
	6.6 knots max
	- 4 wheel pair Hydraulic Drive DO/HB unit, with a hydraulic
	cable diverter.
Drum Spood	- 1 x 2 wheel pair Dowty Hydraulic - Drive Cable Transporter
Drum Speed	

	- 1 x 2 wheel pair Dowty Electric - Drive Cable Transporter
	 - 2 x 1 wheel pair Dowty Hydraulic Drive Cable Transporter (In line)
Repeater Stowage	3 temperature controlled repeater stacks situated adjacent to each main cable tank. Total repeater capacity of 135.
ROV	
 A 2000m depth rated work class ROV si An optional observation class ROV is pro- 	

Owner	N/A	
Contractors:	Statnett	
Specifications:		
MAIN DIMENSIONS & PERFORMANCE		
Builders:	Van de Geiessen-de Noordm, Netherlands	
IMO Number:	8918629	
ABS I.D:	91143143	
Call Sign:	MNNU8	
Port of Registry:	Southampton (British)	
Length Overall:	130.70 metres (inc. gantry)	
Length Between Perpendiculars:	116.68 metres	
Breadth Moulded:	21.00 metres	
Depth Moulded (to Deck 4):	13.00 metres	
Designed Draft:	7.014 metres	
Deadweight:	7417 tonnes	
Summer Draft:	2.508 metres	
Gross Registered Tonnage:	11242 tonnes	
Net Registered Tonnage:	3372 tonnes	
Suez Tonnage:	12121.25 tonnes	
Panama Tonnage:	12034.94 tonnes	
Classifications:	ABS Ice Class 1C 14445 kw, AMS, ACCU, DPS2	
PRC	OPULSION & MACHINERY	
Propulsion and Electric Power		
Generation	6.6 KV Generating Sets	
Generation		
	2 x Stork Wartsila SW280 12 Cylinder 3.1 MWE at 750 RPM	
	each	
For Propulsion & services comprising:	2 x Brush Alternators 3.8 MVA @ 6.6 KV each	
	1 x Stork Wartsila SW280 16 Cylinder 4.2 MWE at 750 RPM	
	each	
	1 x Brush Alternator 5.1 MVA @ 6.6 KV	

Auxilliary Generator	For Harbour use only: 1 x Stork Wartsila FHD 240 G 6 Cyl 0.75MW at 750RPM	
Bow Thrusters	2 x Ulstien Type 375 TV-C, variable pitch, (Motor output each 1.0 MW) Max Lateral Bow	
Azimuth Stern Thrusters:	Thrust 2 x 14 tonnes 2 x Lipps Type S2514 LSCP 360° azimuth thrusters each with a nozzle	
SPEED AND FUEL CONSUMPTION		
Fuel Consumptions:	95% max capacity, 1108 Tonnes Marine Gas Oil (Max Lift, No reserve allowed)	
Economic Speed: Max Speed:	9@12.5 tonnes/day 12.5@28 tonnes/day	
Endurance:	30 days at 12 knots	
	O CAPACITY AND AVAILABLE DECK AREA	
Main Cable Tanks Internal Diameter:	2 17.00m 3.00m	
Cone Outer Diameter: Tank Height: Cone Height:	8.00m 6.5m	
Maximum Load per Tank: Tank Top Loading:	Equating to 2668 tonnes each 15 tonnes/sg m	
Volume of Cable Tanks: Main Wing Tanks:	1327 cubic metres	
Internal Diameter:	6.60m 2.45m	
Cone Outer Diameter: Tank Height:	8.00m	
Cone Height: Maximum Load per Tank:	6.60m 2668 tons	
Tank Top Loading: Volume of Wing Tanks:	15 tonnes/ sq m 199 cubic metres	
volume of wing ranks.	TANK CAPACITY	
Fresh Water Capacity: Fresh Water Usage:	720 tonnes Approx. 15 tonnes/ day ACCOMMODATION	
Total Berths:	76	
Officer Cabins: Crew Cabins:	13 23 x Single, 19 x Double	
Representative Suites: Hospital:	2 2 Berth Hospital (Deck 5)	
	GATION & COMUNICATION EQUIPMENT	
	2 x Kelvin Hughes Nucleus 6000A 'X'&'S' Band	
Radars:	Interchangable	
Navigation Receivers:	2 x Leica Mk412 DGPS 1 x Racal Skyfix Decoder 90938 2 x JAVAD dual GPS GLONASS DGPS Rxs	
Gyro Compasses:	2 x Sperry SR-220 1 x Sperry Navigat X Mk2	

	1 x Marconi International Marine Seachart 3 (0 - 1200
Echo Sounder:	
	Metres)
	1 x Honeywell Elac LAZ 4400 (0-15000 metres) with wide
	beam transducer
DP Vertical Reference Units:	2 x units
DP Acoustic Reference System:	1 x Sonardyne System
DP Taut Wire Reference System:	2 x CEGELEC units - max operating depth approx. 300metres
	1 x Artemis Mk 4 - ships station only. Cyscan Reference
DP Artemis Reference System:	System: 1 x Cyscan short range ref system (hired in)
bi vitemis kererenee system.	(mobilised as required)
NavTex:	1 x ICS Nav 5 NAVTEX
Satcom:	1 x SAT C
	2 x SATCOM B 1 x SEA-TEL KU BAND VSAT
	Fitted with 'Navigator' survey spread for instant & accurate
	position referencing and post processing capability to meet
	all clients needs.
	CRANAGE
A Frame:	35 tonnes
	1 x Fassi Retractable Crane. 1.0 tonnes @ 10.10m, 5.57
ROV Crane SWL:	
	tonnes @ 2.54m
Forward Cranes:	1 x 5 tonne @ 20m, 2 x Gantry Hoists (5 Tons Each)
Aft Cranes:	2 x 2 tonne @ 6m
	CABLE LAYING EQUIPMENT
Forward Machinery:	2 x Hydraulic Powered Drums & 4 Wheel Pair Haul-off gear.
Drum Diameter:	3.50m
Drum Speed:	12.6km/hr @ 25kN
Pull Load:	400kN @ 2.5km/hr
Haul-off Gear:	4 Pair Opposed Wheel unit. Variable tension 0 to 4 tonnes
	1 x Hyrdaulic Powered 2 Wheel Pairs - 2 tonne pull, 1 x
Cable Transporters:	Hydraulic Powered single Pair
Aft Machinan:	· · · · · · · · · · · · · · · · · · ·
Aft Machinery: Drum Diameter:	1 Hydraulic Powered Drum & 6 Wheel Pair Haul-off gear. 4.00m
Drum Speed:	14.0000 14.4km/hr @ 20kN
Pull Load:	200kN @5.4km/hr
Haul-off Gear:	Electrically Powered 6 Pair Vertical Wheel unit. Variable
	Tension 0 to 4 tonnes.
	Dowty 2 Pair Vertical, Hydraulic Powered machine 1.5 tonne
Auxilliary Haul-off gear:	pull.
	μu

Repeater Stowage 90 with Portable Stacking		
ROV		
ROV:	PowerfulTrenching/World class Atlas 1	
MISCELLANEOUS		
Certification of Financial repsonsibility - Water Pollution		

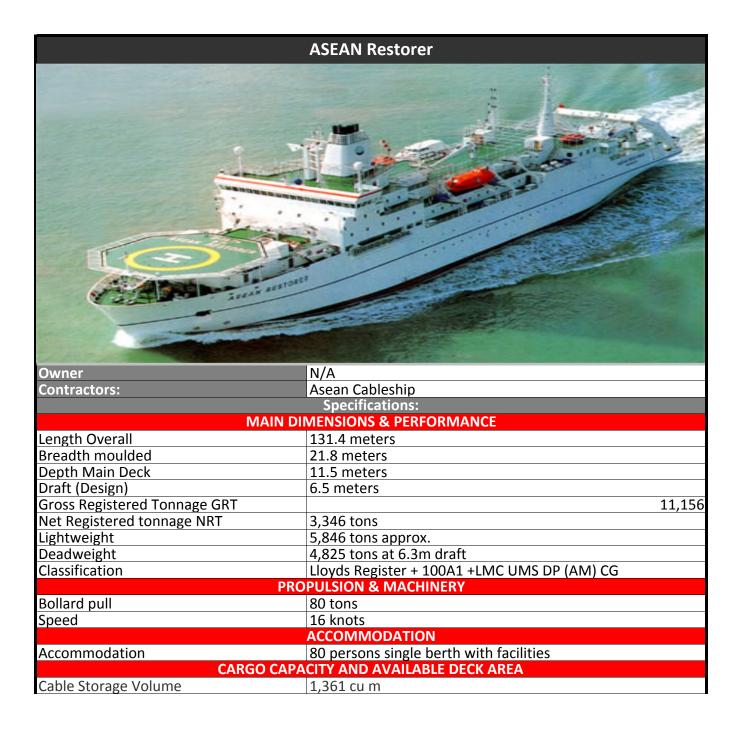
	North Ocean 102
Igel L. Godar Moreix	
go: 14 Rebruary 200 Owner Contractors:	Oceanteam/Mcdermott Oceanteam/ABB Specifications:
	MAIN DIMENSIONS & PERFORMANCE
Vessel	102
	Cable & Umbilical lay vessel
Туре	Construction Support Vessel
Delivery	On Schedule
Year Built	2009
Length OA	137m
Length BP	120.4m
Beam	27 m
Draft Max	6.85m
Depth Main Deck	9.7m
Speed fully loaded	15 knots
Deadweight	10000 tons
	PROPULSION & MACHINERY
	2 x 3500 kW c.p.p. Azipull aft
Dropulsion	1 x 1500 kW Retracktable Azimuth c.p.p. forw
Propulsion:	1 x 1500 kW SS Tunnel Thr. c.p. forw.
	1 x 1500 kW SS Tunnel Thr c.p.p. forw.
	DYNAMIC POSITIONING SYSTEM
Mark	Kongsberg Maratime K-Pos 21
Class	DnV Dynpos-AUTR complies NMD class 2
CARGO CAPACITY AND AVAILABLE DECK AREA	
Product capacity	7000mtons
Deck space	2400m^2
Deck Strength	10 tonnes/m^2
Deck Hatches	two 4x3m, one with coaming
	ACCOMMODATION
Accommodation	199 people

CAPSTANS AND MOORING WINCHES	
Deck Winch	140 tonnes SWL, wier rope
	CRANAGE
	Knuckle Jib Crane Aftships, PS
Main Crane	100 tonnes AHC @ 6m
	25 tonnes @ 32m
Auxiliary	10 tonnes @ 34m
Provision Crane	S.W.L. 2 tonnes @12m
	HELIDECK
Helideck	D-Value 20.88m
	MISCELLANEOUS
Moon pool	7.2 / 7.2 m
	Rapid product loading, state of the system
Product collection	Large product carrying capacity (5000t/7000t)
	High transit speed fully loaded, 15 knots
	DP2, weather operability sea state
Stabalizing Equipment	Two passive roll reduction tanks one ant heating systems
PROJECTS	
Project STATOILHydro GJØA	
Britned	
CICSA (Oil and Gas)	

Stemat Spirit	
Owner	vsmc
Contractors:	Global Marine
	Specifications: MENSIONS & PERFORMANCE
Type of vessel	DP2 special service workboat
	Bureau Veritas +Hull +Mach +AUT UMS +Dynapos AM/AT R
Class	
	Special Service Workboat - Unrestricted Navigation
Trading area	Unrestricted navigation
Flag	The Netherlands
Length over all Moulded depth	90,0 m 6,5 m
Moulded Width	28,0 m
Maximum draught	4,70 m (7,00 m bow thrusters down)
Minimum draught approx.	1,90 m (4,20 m bow thrusters down)
Gross Tonnage	5.551 GT
Deadweight	6.901 ton
	PULSION & MACHINERY
Main engines	2x Caterpillar 3512HD
Stern thrusters	2x HRP 6111 azimuting thrusters 1140 kW
	2x Caterpillar 3512B 2x HRP 6111 retractable azimuting
Bow thrusters	thrusters 1118 kW
	1x Electric driven tunnel thruster 650 kW
Auxiliary / Generators	3x 850 kW Parallel running/PM System
Emergency/Harbour generator	1x 200 kW
	MIC POSITIONING SYSTEM
Regulatory approved	BV Class AM/AT R
	AND FUEL CONSUMPTION
Speed (maximum with minimum draft)	Approx. 10 knots
Fuel oil capacity	Up to 1.400 m3
Fuel consumption	Subject to kind of work
CARGO CAPA	CITY AND AVAILABLE DECK AREA

Open deck space	1.500 m2	
Deck strength	15 ton / m2	
	TANK CAPACITY	
Fresh water maker plant	2x 12 m3/hr	
Fresh water tank capacity	Approx. 300 m3	
Ballast system tank capacity	Approx. 2.000 m3	
Ballast pumps	2x 400 m3/hr	
	ACCOMMODATION	
Single / Double cabins	28-Apr	
Hospital (single)	1	
Total number of beds / POB	60	
Air-conditioning / electric heating		
Client office	2	
Conference room	1	
Deck store	2	
	N & COMUNICATION EQUIPMENT	
Magnetic Compass	Cassens & Path Reflecta 1	
Satellite communications	Seatel VSAT 4006	
DGPS navigator	2x Furuno GP-150D	
Navigation echosounder	2x Furuno FE-700	
Marine radar	1x Furuno FAR-2117/1xFuruno FAR-2137S	
Speedlog	Furuno DS-80	
Speedlog		
Gyro compass	1x Anschutz Standard 22 G/GM + 2x Anschutz Standard 22	
-,	Compact	
AIS system	Furuno FA-150	
VHF radiotelephone Transceiver	3x Furuno FM-8800S	
MF/HF radiotelephone Transceiver	Furuno FS-1570	
Inmarsat C terminal	1x Furuno Felcom 15 + 1x Furuno Felcom 15SSAS	
Inmarsat F terminal	1x Thrane-Thrane F33	
Navtex receiver	Furuno NX-700	
Windsensor	2x Observator OMC-160	
	Glonass Javad LGG100 Fanbeam MDL Fanbeam 4.2 GPS	
Position Reference Systems	Trimble DSM-232	
Vessel Control System	L-3 NMS6000, comprising:	
vessel control system		
	Class 2 Dynamic Positioning System, Thruster Control	
	System, Environmental and Position Reference Sensors	
GMDSS portable VHF transceivers	3x Jotron TR-20	
Epirb	Jotron Tron-40S	
Radar transponder	2x Jotron Tron Sart	
GSM telephone	Sagem RT-3000	
Satellite TV system	Seatel 5004	
Voyage Data Recorder (VDR)	Danelec DM-500	
Chart software	Transas Navigator Pro	
	LSA EQUIPMENT	
MOB / Lifeboat 1		
Lifeboat	1	
	±	
The vessel comply with Solas, IMO and Marpol requirements CAPSTANS AND MOORING WINCHES		
6 Point Mooring System 6x 60 ton pull/100 ton hold full C.T.		

CRANAGE			
Hydraulic deck crane	18 ton at 14 m (hook) / 15 ton at 16 m single line (winch)		
	ANCHORS		
Anchor wires	6x 1.000 m / 48 mm		
Anchors	6x SSHP anchor 7 tonnes		
MISCELLANEOUS			
Sewage treatment plant			
Incinerator	25 kg/hr		
PROJECTS			
Walney 10ffshore Wind Farm			


CARGO CAPACITY AND AVAILABLE DECK AREA		
Cargo deck area	890 m ²	
Cargo deck length	60 m	
Cargo deck load	2000 t	
	TANK CAPACITY	
Water ballast pump	2 x 300 m3	
Fuel oil	430 m3	
Fresh water	240 m3	
Water ballast	2850 m3	
	ACCOMMODATION	
	Total 21 cabins (9 crew and 12 passenger cabins)	
Accommodation	Total 32 beds (9 crew and 23 passenger bed)	
	Very good facilities for the crew. Max. 34 people.	
NAVIGATION	N & COMUNICATION EQUIPMENT	
	1 x JRC 10 cm Radar.	
	1 x JRC 3 cm Radar	
	2 x Meridrian Standard Gyro compass	
Novigation aquinment	1 x JRC JLR-10 GPS compasss	
Navigation equipment	1 x Kongsberg K-Pos DP2	
	1 x Northstar MX500 D-GPS	
	2 x Simrad CS68 ECDIS	
	1 x Simrad AP50 Autopilot	
	Vingtor intercom and ascom (portable)	
	GMDSS A3 JRC Radio station	
	2 x McMurdo 9 Ghz SART	
	2 x E5 Smartfind Cospas - Sarsat EPIRB	
Communication equipment	3 x Jotron Tron TR20 VHF porable	
	9 x Motorola GP340 UHF portable	
	1 x JRC NCR-333 Navtex	
	1 x JRC JHS 182 AIS	
	Sealink Phone, email an fax	
	CRANAGE	
HMC 1800 LK 50-30	5 t x 30 m	
	MISCELLANEOUS	
	ISM certified	
QA – Requirements	ISPS certified	
QA – Requirements	ISO-9001:2000 certified	
	ISO-14001:2004 certified	
	STERN RAMP	
Length	16 m	
Breath drive-way	9.6 / 11.4 m	
Frame (height / breath)	10 m / 11.4 m	
Max load on ramp	500 t	

	CS Sovereign
Owner	N/A
Contractors:	Elettra TLC SPA Specifications:
MAIN DI	MENSIONS & PERFORMANCE
Flag	Italian
Base port	Catania (Italy)
Classification	R.I.Na. * 100 - A - 1.1. MNPe Pcv CNP ELI – IAQ1 –IPD-2
Built/year	1996
Length overall	111.5 m
Length between perpendiculars	95.0 m
Breadth, moulded	19.0 m
Max. draft	6.5 m
Max speed	14 kts
Bollard pull	60t
	MIC POSITIONING SYSTEM
	Kongsberg SIMRAD ADP 702
Load Capacity	CITY AND AVAILABLE DECK AREA
	2,500 t (Note: SOIB requires a load of 4500 tons) ACCOMMODATION
Accommodation	68
	NS AND MOORING WINCHES
SMD Towing winch system fitted with	SWL: 55t on brake Max speed 30m/min @ 10t 8m/min @
4,000m of 40mm diameter tow wire	35t
SMD A-Frame with plough stabilizing and docking system	CRANAGE Lifting capacity SWL 30t
	MISCELLANEOUS
PLOUGH HANDLING AND TOWING EQUIP	
	PROJECTS
ATTICA-MILOS-CHANIA - Lay MECMA - Repair n.8 "IC-1 Seg.9; Seg.6" +	

JANNA - Lay Seg.2 + PLIB
JANNA - Lay Seg.1 + PLIB
MECMA - Repair n.1 "Crete-Karpathos"
MECMA - Repair n.8 "Licata-Linosa"
OTE - Lay "Kerkira-Plataria" and "Patmos-Samos"

	ASEAN Explorer
and when the second that has	
2 Mar many - man	
	t
	Here is a second second
4	HITADOROSANSA DI
I meterine the size of March	
ATERA COPICACE	
ASEAN C	ABLESHIP
and the second second second	
and a starting	
Owner	N/A
Contractors:	Asean Cableship
	Specifications:
MAIN DI	MENSIONS & PERFORMANCE
Length Overall	141.93 meters
Breadth Moulded	23.0 meters
Depth Main Deck	12.5 meters
Design Draft	7.5 meters
Scantling Draft	8.0 meters
Freeboard at Design Draft	5.0 meters
Classification	Lloyds Register + 100A1 +LMC UMS DP (AA) CG
PRO	PULSION & MACHINERY
Speed at Design Draft	14.5 knots
Endurance	60 days
Bollard Pull	More than 100 tons
Propulsion Plant	Two (2) Azimuth Thrusters of 3700 KW each
Bow Thrusters	Three (3) Tunnel Bow Thrusters of 1700 KW each
Main Engine	Four (4) sets, 3240 KW each.
Aux Engine	One set, 1325 KW
	MIC POSITIONING SYSTEM
Dynamic Positioning System	Duplex System (100% redundancy)
	CITY AND AVAILABLE DECK AREA
Main Cable Tank 3 off each	15.5 meters
Spare Cable Tanks 2 off each	6.0 meters
Cable Deadweight	5760 tons (excluding spare tanks)
Cable Stowage Volume	3600 m3
	ACCOMMODATION
Accommodation	70 persons single berth en suite cabin BLE LAYING EQUIPMENT

Cable Engine	Two drum engines, 40 tons, 4 meters in diameter and 21 wheelpair linear cable engine.	
Cable Transporters	Two, 2 tons	
Stern Sheaves	2 x 4 meters sheaves	
Sub Sea Plant		
ROV		
ROV Capability	The vessel is equipped with space, power and other ancillary services for the future deployment of a work-class ROV system.	

CS Teneo & CS Global Sentinel		
Owner	Tyco Telecommunication	
Contractors:	Tyco Telecommunication	
	Specifications:	
MAIN DIMENSIONS & PERFORMANCE		
Vessel Particulars (Reliance Class)		
Year Built	2001-2003	
Range	25000 nautical miles or 60 days	
Service Speed	14 knots	
Length Overall	140m	
Molded Beam	21m	
Deep Draft	8.4m	
Gross Registered Tonnage	12,184	
Deadweight	9200 MT	
Classification	ABS + ACCU, +AMS, +DPS-2, NBLES, UWILD	
PROPULSION & MACHINERY		
Туре	Diesel Electric	
Main Engines	5x KRGB-9 Bergen 1990kW each	
Forward Bow Thruster	1x Ulstein-1700 kW/0-900 RPM	
Aft Bow Thruster	1x Ulstein-1700 kW/0-1800 RPM	
Azimuthing stern Thruster	2x Ulstein-3100 kW/0-720 RPM	
DYNAMIC POSITIONING SYSTEM		
Dynamic Positioning	Kongsberg Simrad SDP 21 DP system	
	APACITY AND AVAILABLE DECK AREA	
Cable Capacity	5465.5 MT (total for 3 tanks)	
Tope Tank Capacity	107 MT	
	TANK CAPACITY	

Fresh Water	440.5 MT	
Fuel Oil	3242.9 MT	
Water Ballast	4403 MT	
	ACCOMMODATION	
Accommodations	80	
CRANAGE		
After Deck Cranes	2x10 ton SWL	
Mobile Cable Transporters	3x1.5 tons (T-2000)	
CABLE LAYING EQUIPMENT		
Stern Linear Cable Engine	1x ODIM, 20 wheel pair, 16 ton capacity	
Stern Drum Cable Engine	2x Kley France (ODIM), 4m diameter	
	30 ton lifting capacity	
Dynamometers	WAMAC roller type and load cells	
Draw Off/ Hold Back	2x ODIM, 4 wheel pair, 4 ton capacity	
Stern Sheaves	3x3.5m diameter	
	ROV	
ROV	Perry Tritech-Triton ST200 Series	
Sea Plow	EB3/ SMD MD3	
	MISCELLANEOUS	
Automation Control	S.V.C	
Software Tools	WinFrog, Makai	
Note: The CS Teneo and CS Global Sentinal are sister ship and have indentical specification		
(Reliance Class), there other sister ships include:		
CS Global Sentinel		
BC Teneo		
CS Tyco Reliance		
CS Tyco Responder		
CS Tyco Resolute		
CS Tyco Dependable		
CS Tyco Decisive		
CS Tyco Durable		

Emerald Sea (Formerly the Maersk Defender)		
in the second		
	and the second s	
-	Ħ	
1		
Owner	McDermott International	
Contractors:	McDermott International	
	Specifications:	
Flag	Danish	
Construction year	1996	
Conversion year	N/A	
Length, overall	96,00 m	
Breath	20,00 m	
Draught	8,40 m	
Deadweight	7960 t	
PROPULSION & MACHINERY		
Bollard pull	100 t	
Generator capacity	2x600 kW, 2x2400 kW shaft generators	
Thrusters	2x736 kW, 1x1100 kW, 1 Azimuth 883 kW	
Propulsion	: 2 x 3520 kW	
SPEED AND FUEL CONSUMPTION		
Transit speed	16,0 knots	
CARGO CAPACITY AND AVAILABLE DECK AREA		
Cable tank capacity	2 x 2500 t + 2 x 500 t	
Repeater storage	2 x 56 units	
	BLE LAYING EQUIPMENT	
Cable machinery	1 x LCE 20-WP 20 t + 1 x CDE 4,0 m 25 t	
	ROV	
Type of plough	SMD (installation only)	
Type of ROV	CMR4, 300 kW, 1000 m depth, 1,5m burial	
	MISCELLANEOUS	

Former cable lay ship, was purchased by Secunda (sub company of McDermott International in 2006 and converted to a subsea support ship. The ship has been upgraded in late 07 with additional living quarters, moonpool, a helideck and a 100t subsea crane.

Giulio Verne

North Ocean 102

CS Global Sentinel and CS Teneo

Teliri

Emerald Sea

Team Oman

Skagerrak

M/V "ELEKTRON"

ASEAN Explorer

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 252 of 333 Stemat Spirit

Cable Innovator

CS Sovereign

ASEAN Restorer

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 255 of 333 * From my research the six vessels listed are the most suitable from the job of installing the cable in SC

* Thought may also be given to Vessels of Global Marine's Fleet: CS Sovereign, Cable Innovator, Cable * Thought may also be given to Tyco Telecommunications Fleet: CS Tyco Reliance, CS Tyco Responde *Thought may be given to Ile De Batz, and Ile De Sein of Alcatel

*Statnett's M/V Electron was converted to Cable lay vessel in 2009

http://www.shipspotting.com/modules/myalbum/viewcat.php?pos=510&cid=38&num=10&orderby=hitsA

)BI Networker (Barge), Wave Sentinel yr,CS Tyco Resolute,CS Tyco Dependable,CS Tyco Decisive,CS Tyco Durable,CS Global

Intresting site

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 258 of 333

Appendix V- Skagerrak Information

C/S NEXANS SKAGERRAK

OWNER: NEXANS SKAGERRAK AS (A wholly-owned subsidiary of Nexans Norway AS)

NOTE. The vessel was extended 12.5 metres by mid April 2010. The vessel data has therefore been updated.

GENERAL

C/S NEXANS SKAGERRAK is specially built for laying and repair of heavy submarine power cables. The main features are the 7000 tonnes and 29 m diameter turntable and purpose designed cable laying gear based on a cable capstan and linear engine combination with a 5 m cable radius throughout.

The fully redundant dynamic positioning system allows C/S NEXANS SKAGERRAK to operate close to offshore structures and perform accurate cable laying operations.

√e x a n s

THE VESSEL GENERAL

INEKAL	
IMO NO:	
Call sign	

7619458 LCEK

CLASSIFICATION

Classification society:	DNV
Class	■1A1 MW. EO. Cable Laying Vessel
	DYNPOS AUTR. Unrestricted trade
DNV ERN	99.99.99
Flag	Norwegian (NOR)

THE HULL

Gross Tons (GT):	7382	(ITC 69)
Net Tons (NT):	2214	(ITC 69)
DWT:	7150	
Length of hull:		
- over all length:	112.25 m	(368.2 ft.)
- incl. laying sheave:	118.50 m	(389.8 ft.)
Total width:	32.15 m	(105.5 ft.)
Depth moulded:	8.00 m	(26.2 ft)
Draught at 7150 DWT.:	5.40 m	(17.7 ft.)
- incl. stern propellers:	6.17 m	(20.2 ft.)
- bow propeller lowered	8.13 m	(26.7 ft.)
Deck load:	10 tonnes/m ²	
Ballast capacity:	5948 tonnes	
Speed, approx.:	10 knots	

PROPULSION MACHINERY

Stern thrusters:		
- steerable, port side:	1943 kW	(2640 HP)
- steerable, starb. side:	1943 kW	(2640 HP)
- steerable, center:	1000 kW	(1360 HP)
Bow thrusters:		
- steerable, center:	1820 kW	(2475 HP)
- tunnel:	957 kW	(1300 HP)

AUXILIARY ENGINES

Motor generators:	380 V, 50 Hz
Number of generators:	5

Capacity:	4 x 500 kVA
Cupucity.	1 x 600 kVA

ACCOMMODATION FACILITIES

Single berth cabins:	60
Double berth hospital:	1
Accommodation container(s):	Option

ELECTRONIC EQUIPMENT

NAVIGATION EQUIPMENT

Radar, 3 cm and 10 cm. Gyros Echo sounding equipment. Satellite navigation. Doppler log. Autopilot.

SURFACE REFERENCE SYSTEMS

Differential GPS Differential GPS/GLONASS IALA UHF Fanbeam

UNDERWATER POSITION REFERENCE SYSTEM

Kongsberg Simrad HIPAP 500

DYNAMIC POSITIONING EQUIPMENT

Kongsberg Simrad SDP 521

NAVIGATION BACK-UP AND DATA LOGGING SYSTEM

Fugro software.

COMMUNICATION EQUIPMENT

Marine Radio System. VHF-stations. Mobile VHF and UHF stations for the cable operations. Closed circuit TV-system.

CABLE LAYING MACHINERY

ELECTRICALLY DRIVEN TURNTABLE

Outer diameter:	29 m
Inner diameter:	12 m
Load capacity:	7000 tonnes
Max. speed:	1.2 r.p.m.
I	I

PICK-UP ARM

Min. bending diameter:	9 m
Max. opening	400 mm

PRETENSIONER

Duplex belt caterpillar	
Number of units:	1
Pulling/braking force:	max. 2 tonnes
Pick-up/pay-out speed:	max. 70 m/min.
Belt squeezing force:	0 - 4 tonnes
Belt opening:	30 - 350 mm
Contact length:	1000 mm

CABLE CAPSTAN

Drum diameter:	10 m
Pulling/braking force:	max. 47 tonnes
Laying speed:	max. 60 m/min.
Heaving speed:	20 m/min. at max. cable tension.

LINEAR CABLE ENGINE

Number of wheel-pairs:
Wheel dimensions:
Pulling/braking force:
Breaking force, intermittent
Laying speed:
Heaving speed:

12

18" x 7" max. 8.5 tonnes max. 10.0 tonnes max. 50 m/min. max. 25 m/min.

LAYING SHEAVES

Starboard, outer diameter:	10 m
Port, outer diameter:	5 m

CABLE REPAIR WINCH

Low pressure hydraulic winches with separate wire drums, for	
cable repair.	
Number of units:	2
Wire dimension:	38 mm
Wire length:	3000 m
Pulling force:	max. SWL 30 tonnes

MOORING CAPSTANS

Two speed electrically operated	
capstans.	
Number of units:	4
Pulling force:	max. 10 tonnes each
Low pressure hydraulic capstans	
on forecastle.	
Number of units:	2
Pulling force:	12 tonnes
Speed:	max. 42 m/min.

MAIN ANCHOR WINCHES

Number of units:	2
Pulling force:	12/20 tonnes each
Length of chain:	550 m
Anchor weight:	4.59 tonnes each

CRANES

HYDRAULIC CRANES ON CABLE REPAIR DECK

Number of units:	3
Boom length:	16 m
Lifting capacity:	SWL 5 tonnes each

A-FRAME

Lifting capacity:

SWL 40 tonnes

OTHER CRANES

Lifting capacity:

20 tonnes on 16 metres

Mexans

MISCELLANEOUS

AUXILIARY EQUIPMENT

For a cable laying or a cable repair operation, C/S NEXANS SKAGERRAK can be equipped with the following auxiliary equipment:

- work boats.
- Subsea cable cutting and retrieving equipment
- Equipment for the cable testing and splicing operations.

The vessel has her own stores of equipment needed for laying or recovery operations and a mechanical work-shop equipped for various types of metal processing and repair work.

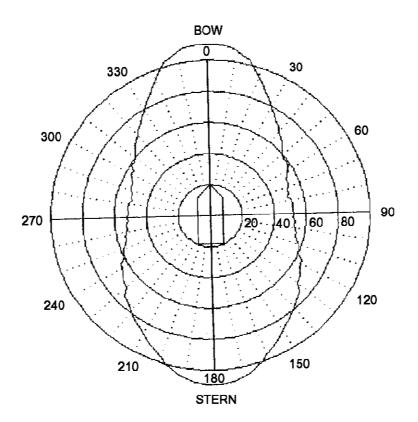
ROV

The vessel is equipped with a Remote Operated Vehicle (ROV) of type ARGUS Mariner XL as standard, in order to monitor the cable touch down point on the seabed, perform subsea intervention tasks or execute pre- and post-lay surveys.

TRENCHING

The vessel can be used as support vessel for various subsea tasks including cable and flowline trenching operations using the CAPJET waterjet based trenching systems developed by Nexans Norway.

VESSEL CAPABILITY PLOT

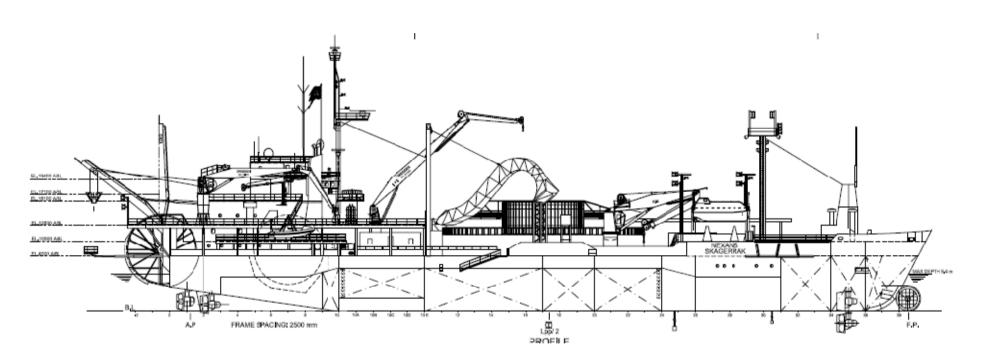

(New plot in progress)

A vessel capability plot shows the extreme weather conditions during which the vessel has enough thrusters force to maintain position. A capability plot for C/S NEXANS SKAGERRAK is presented below with the following conditions:

Current: 2 knots Thruster force:

<u>Thruster No</u>	Positive Force	Negative Force
	<u>(tonnes)</u>	<u>(tonnes)</u>
1	16.0	16.0
2	27.5	12.0
3	34.0	16.0
4	34.0	16.0
5	19.0	12.0

Environmental incident angle of wind, wave and current



Circles are wind speed in knots

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 267 of 333

Mexans

GENERAL ARRANGEMENT (Profile only)

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 268 of 333

Appendix W- Scanmudring SCANmaskin Specifications

scanmaskin1000

Precision subsea excavator and tool-carrier

scanmudring

The Scanmaskin tool-carrying systems are designed for implementing dredging, excavator, cutting, and various other hydraulically operated tools. They have been successfully deployed in many deep, shallow, harsh water, high current, and low visibility underwater construction activities such as:

- Subsea precision excavation in connection with repairs, hot-tapping, pile cutting, and inspection
- Levelling and modification of seabed (rock dump, hard and soft clays, and soils)
- Rock dump, drillcut, boulder, and debris removal/relocation
- Pipeline and cable deburial, maintenance, location, and inspection
- Grouting removal
- Trenching tasks
- Assistance and preparation for installation and decommissioning of platforms and subsea assets
- Near shore programs (such as precision drilling in preparation for blasting and High Voltage cable repair)

The Scanmaskin subsea excavator and tool-carrier systems are based on modified excavators combined with state of the art ROV technologies with open tool interfaces. This combination harnesses the experience of both the advanced subsea technologies and the ruggedness of land based construction machines.

The Scanmaskin systems are designed for rapid mobilisation and opetation in water depths up to 1000m. A special monitoring system (MoS), enables safer operation and improved productivity in poor visibility applications. This is most valuable when operating close to live assets or in projects requiring the combination of power and precision.

The excavation capability in hard soil is excellent. Our hydraulic drum cutter has been successful tested on concrete slabs with hardness of about 15 MPa.

scan mudring

Ballastgt. 3 NO-4515 Mandal

Tel.: +47 38 27 80 30 Fax: +47 38 27 80 39 postmaster@scanmudring.no

www.scanmudring.no

scanmaskin1000 TECHNICAL SPECIFICATION

scan mudring

GENERAL

Name:	Scanmaskin1000
Manufacturer:	Scanmudring
Rov class:	Norsok ROV class IV
Туре:	Tracked (bottom crawling) ROV system
Work capabilities:	Subsea construction and excavation work
Available tools:	12", 14", and 16" suction ejector systems Excavator and and special hydraulic operated tools (bucket, gripper, water jet, drill, cutter, blower, drum cutter, back flush) Excavator monitoring system (MoS) for accurate levelling and construction work Several configurations of arms and undercarriages available
Number of available units:	3 operational Scanmaskin 1000 complete systems available in several set-ups

DIMENSIONS AND WEIGHT

	No.1	No.2	No.3	
Length* (m):	7.2	11.0	8.5	
Width (m):	2.2	3.1	2.4	
Height (m):	3.3	5.7	3.3	
Weight in air (ton):	11	20	13	
Manipulator reach (m):	5.5	11.0	6.5/9.5	

 * Stated dimensions in storage position with manipulator folded and with standard ejector.

OPERATING PARAMETERS

Operating depth (m):	5 - 1000	5 - 1000	5 - 1000
Relocation range:			
With standard ejector(rock) (m)	13	19	17
Drillcutting with exhaust hose (m)	13 + 50	19 + 50	17 + 50
With slurry pump (m):	NA	200	200
Water capacity (m ³ /h):	1950	1950	1950
Max removal capacity (m ³ /h):	95**	95**	95**
Navigation:			
Cameras: BW/Colour/low light:	3/1/1	3/1/1	3/1/1
Gyro:	1	1	1
MoS (excavation monitoring system), accuracy +/-5cm:	Yes	Yes	Yes

SHIPBOARD SUPPORT

LARS lift capacity (ton):	25	35	25
Deck space requirements***:			
Wooden landing area (m):	10x10	10x15	10x10
Umbilical winch (m):	4.5x2.2	4.5x2.2	4.5x2.2
Number of 20' containers:	2	2	3
Number of 10' containers:	N/A	1	N/A
Number of Baskets:	N/A	1	N/A
Space for spares/suction hoses (m):	12x2	12x2	12x2

Power supply requirements:

Operators:

265kW, 440V, 60Hz, 250-400A, depending on tools fitted 12kW, 220V, 60Hz, 32-63A, depending on ambient temperature 6 operators for 24hours operation supplied by Scanmudring.

* The removal capacity is heavily dependant on soil characteristics, ejector/pump sizes, and the operation conditions present at site. As a guideline about 5 per cent mixtures in water is possible when using the 12" to 16" ejectors, but the actual achieved capacity is normally lower. For project estimates a general removal capacity about 2-3 per cent should be expected. In order to achieve an efficient capacity, it is recommended to use an ejectors size about twice the average size of the items to be relocated.

*** Subject to system tool and project configuration. Different umbilical winches and container spreads will have an effect.

scanmudring

Ballastgt. 3, NO-4515 Mandal, Tel.: +47 38 27 80 30, Fax: +47 38 27 80 39, E-mail: postmaster@scanmudring.no www.scanmudring.no

This document is the property of Scanmudring AS (rev.B)

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 271 of 333

Appendix X- Cutting Grapnel

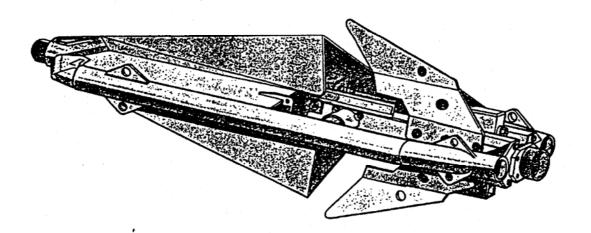
Cutting Grapnel

Asset no. GA 2-1 and 2-2

Cable Types: -	Lightweight and Armoured Cable	
	Up to 100mm Diameter	
Grapnel Dimensions: -		
Length	2.8m	
Width	1.12m	
Height	1.0m	
Weight	1.85 Tonnes	
Maximum Operating Depth	2000 Fathoms (3657m)	
Operating Temperature	Minus 5C to + 50C	
Storage Temperature	Minus 40C to + 50C	
Power Pack Dimensions: -		
Length	1.0m	
Width	0.8m	
Height	1.2m	
Weight	1.0 Tonne	
Power Supply	3 Phase, 415V, 50 Hz	
Oil Type	Tellus 32	
Gas Type	Oxygen Free Nitrogen	
Acoustic Receiver	114 or Equivalent	
Pinger	138 or Equivalent	

Global Marine Systems Limited New Saxon House 1 Winsford Way Boreham Interchange Chelmsford Essex CM2 5PD www.globalmarinesystems.com

1 DESCRIPTION


Substantial accidental damage can be caused to submarine cables that need to be lifted from the sea-bed to a surface repair ship, particularly when there is insufficient slack in the cable to allow it to be lifted unbroken.

Cable and Wireless (Marine) have introduced the Cutting Grapnel as a simple and highly effective solution to the problem. It will cut the most heavily armoured communications cables at depths down to 2000 fathoms with only the minimum of disturbance caused to the cable line.

After being hydraulically charged the cutting grapnel is lowered to the sea-bed, to a maximum depth of 2000 fathoms and dragged across the cable line to the point where it hooks the cable. Progress of the 'catch' is monitored on the ship, as the grapnel has an in-built acoustic transmitter.

Once hooked, the previously charged hydraulic guillotine cuts through the cable. Because the cutting action is hydraulic and not by means of cable tension little disturbance is caused either to the cable itself or to the repeaters. Cuts can be made to all thicknesses of cable, from lightweight to heavily armoured.

Once the cut is made, the Cutting Grapnel is retrieved and two cable ends are lifted using conventional grapnels.

FIGURE 1 THE ACTIVE CUTTING GRAPNEL ASSEMBLY

1 General Description of Sonar Equipment

The pinger makes a noise which sounds like a very loud high-pitched 'ping' every few seconds. The hydrophone is an underwater microphone with a small built-in amplifier. It can hear the pings up to five miles away in water. The signal from the hydrophone is fed to the receiver and can be heard from its loudspeaker, seen as a blip on the screen.

While the grapnel is being towed searching for the cable (trawl mode), it pings every eight seconds at a frequency of 9.1 kHz. As soon as the cable is hooked it triggers the grapnel hydraulics and this switches the pinger to one every second, at a frequency of 9.6 kHz. Once the operation is complete the ping rate switches to one every four seconds at a frequency of 10.1 kHz.

* Further reference should be made to the HSE Manual contained in Appendix A.

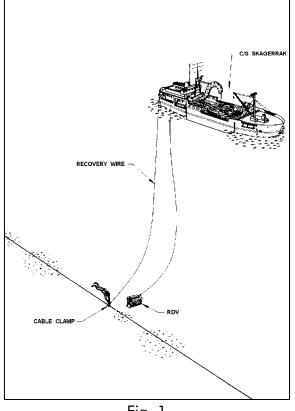
1.2 Technical Data

Weight of Active Cutting Grapnel	1984.1 lbs	900 kg
Weight of Power Pack	2204.6 lbs	1 000 kg
Overall Length of Active Cutting Grapnel	85.98 ins	2184- mm
Maximum Height of Active Cutting Grapnel	32 ins	813 mm
Maximum Width of Active Cutting Grapnel	10 ins	254 mm
Length of Power Pack	56.1 ins	14254 mm
Height of Power Pack	55.1 ins	1400 mm
Width of Power Pack Power Supply	39.37 ins 415 volts 3 j	1000 mm phase 50 Hz
Material	BS 4360	
Operating Temperature	-5° C to +50° C	
Storage Temperature	-40° C to +70° C	
Operating Depth	3657.5 m	2000 fathoms

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 275 of 333

Appendix Y- Nexans Skagerrak Cable Repair Specifications

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 276 of 333


GENERAL DESCRIPTION OF A REPAIR OPERATION C/S " NEXANS SKAGERRAK"

This paper describes in general terms the operation for repairing submarine cables by using C/S NEXANS SKAGERRAK as repair vessel. Minor adjustments in procedure may occur due to local conditions.

A submarine cable repair operation starts by loading a sufficient length of spare cable into the turntable. Repair joints and repair crew are mobilised onboard. Grappling/cutting anchors and two repair bows are also included in the equipment.

The fault is previously pinpointed by fault location equipment, ROV, or divers and the vessel will sail to this location.

C/S NEXANS SKAGERRAK will stay in position above the cable damage. The existing cable will be cut and one end retrieved to the vessel. This may be performed by divers equipped with hydraulic compressing and cutting devices or by ROV equipped with special cutting tool. (Fig. 1). If the cable is buried a certain section of the cable has to be uncovered by water jets, suction or similar equipment before this operation starts.

It is essential that the ends of a paper insulated oil filled cable are properly compressed in order to minimise the oil leakage to the sea. In addition the winch wire is attached to the cable a certain distance from the cable end. During heaving the cable end is pointing downwards ("swan neck").

A winch wire is positioned through the caterpillar linear tensioner, the capstan and the linear cable laying machine. This wire is connected to the grappling anchor or to a cable clamp on the cable. The cable end is carefully brought to the surface as the vessel moves slowly backwards along the original route.

The cable end is carefully pulled in over the cable laying wheel, through the linear cable laying machine, over the capstan and through the caterpillar linear machine.

During the recovery operation the cable is visually inspected, and damaged cable is cut on the turntable. The cable end is then sealed and lowered down to the seabed with a steel wire connected to a surface buoy, for later recovery. The other end of the cable is now being recovered and brought up to the vessel following the same procedure as for the first end. Damaged cable is cut on the turntable.

While the cable end is still in the cable guide above the turntable the spare cable is pulled on guides from the turntable through the repair deck on starboard side, around the repair bow (at the stern) up to the jointing room located at the port side of the vessel. The cable end is secured in the jointing room. (Fig. 2 & 3).

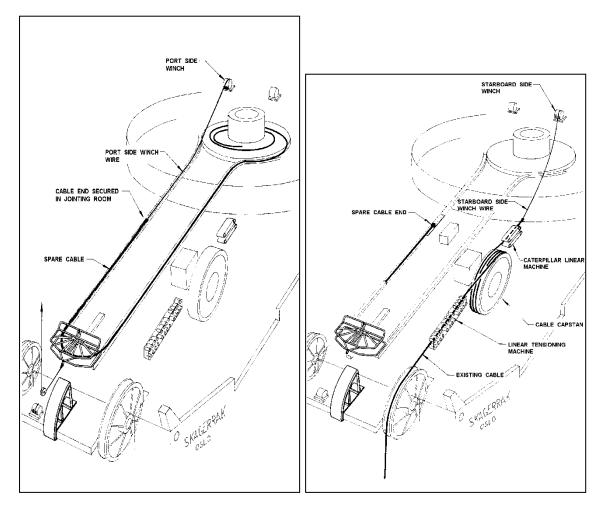


Fig. 3

The recovered cable is pulled around the turntable and into the repair room as C/S NEXANS SKAGERRAK recovers more cable while moving backwards. The operation stops when the cable end has reached the repair room. The cable is secured. (Fig. 4).

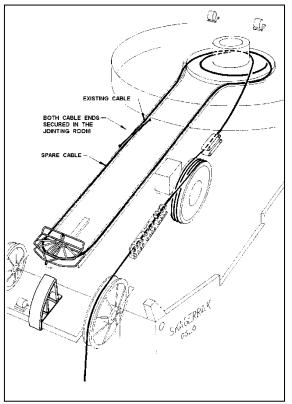


Fig. 4

The first cable joint between spare cable and existing cable is performed by skilled jointers. The jointing method depends upon the type of cable.

During the jointing work C/S NEXANS SKAGERRAK stays in position by DP.

Finishing the jointing work all supports that keep the repair bow in position, is released. The laying operation will commence, and the tension in the cable will pull the repair bow forwards. The operation stops when the bow has reached its end position nearby the turntable. The repair bow is lifted up and removed. All spare cable and the first repair joint are now placed on the turntable. (Fig. 5).

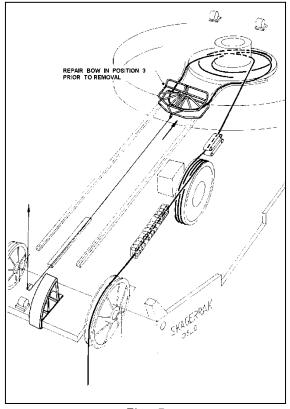


Fig. 5

C/S NEXANS SKAGERRAK continues to lay the cable along the original route until the vessel reaches the position above the second end of the existing cable.

The second cable end is retrieved. C/S NEXANS SKAGERRAK moves slowly forwards along the route and pays out more spare cable while the second end of the existing cable is carefully being pulled on board over the repair sheave. The operation stops when undamaged cable has reached the repair room and been secured.

The spare cable is cut and the ends sealed. The spare cable is paid out until the end has passed through the caterpillar linear machine and the cable capstan. The cable is pulled through roller guides from the linear tensioning machine and pulled over the repair bow (now located nearby the turntable) and back into the repair room. The cable end is secured. Both cables are now secured at the stern laying wheel and stern repair sheave respectively. (Fig. 6).

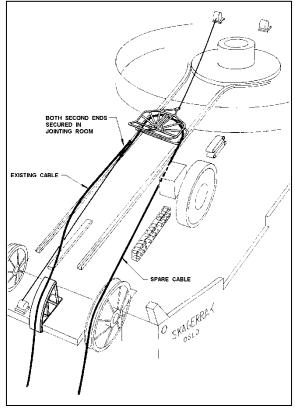
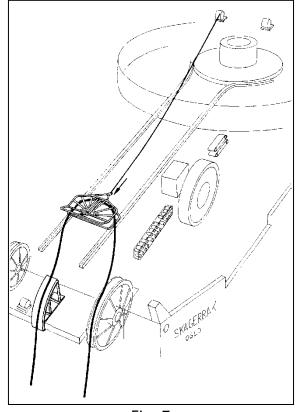
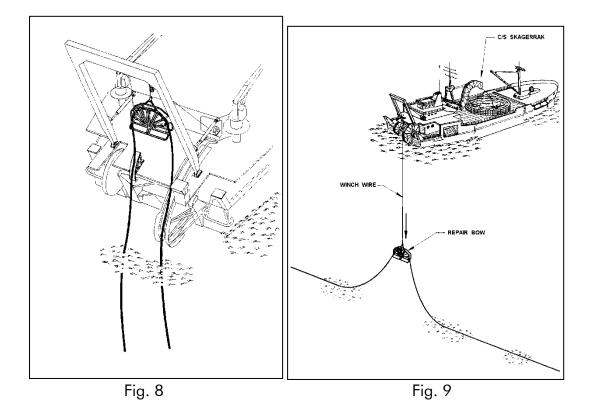



Fig. 6

The second joint between spare cable and existing cable is now being performed.


During the jointing work C/S NEXANS SKAGERRAK stays in position by DP.

When the second joint is finished the securing locks at the stern laying wheel and stern repair sheave are removed. The winch wire attached to the repair bow is slacken. The cable is laid out over the wheel and sheave while C/S NEXANS SKAGERRAK is moving slowly perpendicular to the cable route. The tension in the cable will move the repair bow toward the stern as the winch wire is slacken away. The operation stops temporary when the repair bow has reached the aft part of the repair deck. (Fig. 7).

A winch wire running through a pulley at the top of the A-frame, is connected to the repair bow. The repair bow is carefully lifted up until the hair-pin loop is hanging in the A-frame. The hair-pin loop is lowered while C/S "NEXANS SKAGERRAK" continues moving perpendicular to the route. (Fig. 8 & 9).

The operation stops when the repair bow has reached the seabed. The repair bow is released from the loop and lifted on board the vessel.

At this point the repaired cable deviates from a "straight" line forming a curve on the seabed. The "extra" length is slightly above twice the water depth.

The cable can now be buried, if required.

NOTE

The description above explains the procedure when a spare cable is jointed into an existing cable. However, when the damage is located near the landfall the cable can be retrieved from this end. In this case only some of the stages are applicable. The (spare) cable is re-laid following the procedures for a cable laying and second end pull-in at the landfall. Only one subsea repair joint is required and the cable is laid in a "straight" line. The need for a joint at the shore is dependent on the location of the

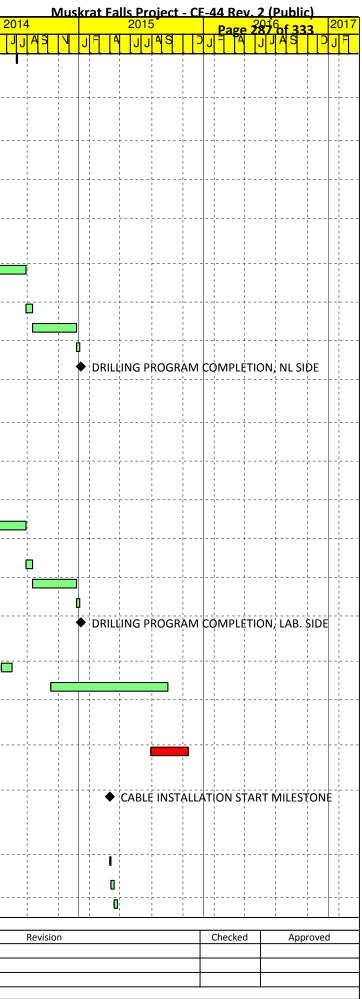
termination. If located near the shore the spare cable will replace the previous laid cable from the subsea joint to the termination.

Operational limits during jointing

The operations are based on weather conditions not exceeding the following parameters given below. However, the values are guidelines only. The Captain and the Operation Manager will evaluate the weather conditions on site and act accordingly. The direction of wind and current resulting sea state might give other values.

	<u>Retrieve cable end</u>	Jointing operation	Laying the joint
Wind force:	12 m/s (23 knots)	15 m/s (29 knots)	12 m/s (23 knots)
Max. wave height:	3.5 m	5 m	3.5 m
Current, surface:	1.3 m/s (2.5 knots)	1.3 m/s (2.5 knots	1.3 m/s (2.5 knots
Current, bottom:	1.3 m/s (2.5 knots	N/A	1.3 m/s (2.5 knots
Surface visibility:	N/A	N/A	N/A
Visibility in water:	2 m	N/A	2 m

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 285 of 333


Appendix Z- SOBI Seabed Installation Schedule

	nalcor		Nalcor	Energy - Lo	ower	Churcl	nill	Proje	ect							
	e n e r g y		SOB	SEABED INS	STALLATION SCHEDULE											
Activity ID	Activity Name		Start	Finish		2011			2012			2013		2014	4	
									JJAS	N	J- A		a D J		AS	
SOBI Seabed In	stallation															
SOBI_IL_0011150	INSTALLATION START MILESTONE		27-May-13*										ALLATION	START MIL	ESTC	
SOBI_IL_0011170	SOBI CONTRACT CABLE INSTALLATION START	(VESSELS 'IN' WATER)	01-Jun-15*		1	1 1 1 1 1 1			 ! !	1	1	I I I I I I I			1	
SOBI_IL_0011110	COMPLETIONS MILESTONE			19-Sep-15		 						 			 	
CONTRACTING												 				
CABLE SUPPLY &	INSTALL											 			1	
SOBI_IL_0012550	Bid, Evaluate, and Award		04-Jan-11*	16-Dec-11			<u> </u>				+-+				 	
SOBI_IL_0013400	Vendor Engineering		03-Jan-12	14-Dec-12					i					1		
SOBI_IL_0013410	Vendor Fabrication		17-Dec-12*	06-Dec-13	L		- +			<u>ן</u>	- +	I I		·		
SOBI_IL_0013430	Completion Milestone			06-Dec-13								 	♦ Co	mpletion N	, viles	
	STRUCTION (INCL. SUPPLY)					· · · · · · · · · · · · · · · · · · ·										
SOBI_IL_0013380	Bid, Evaluate & Award - (Contractor Supply &	Install)	23-Jul-12*	24-Jan-13												
		llistall)	23-Jul-12	24-Jail-15												
	ECTIONAL DRILLING					 										
SOBI_IL_0013370	Bid, Evaluate, and Award - Engineering		01-Nov-11*	03-May-12							 -	· · · · · · · · · · · · · · · · · · ·				
SOBI_IL_0012730	Engineering		04-May-12	25-Mar-13					1	1	1				1	
SOBI_IL_0013390	Bid, Evaluate, & Award HDD Contractor		26-Mar-13	22-Jul-13											1	
LEVELING									¦ !		+ - 	 		·		
MOB.																
SOBI_IL_0011310	Vessel loadout		26-Jun-14*	26-Jun-14												
SOBI_IL_0011900	VESSEL ARRIVAL IN NL		26-Jun-14*	20-3011-14										•	VESS	
SOBI_IL_0011010	Bunkering		26-Jun-14*	27-Jun-14		 		- -				 		····	 	
SOBI_IL_0011020	Equipment Loadout		27-Jun-14	27-Jun-14										1	1	
SOBI_IL_0011030	Personnel Change		27-Jun-14	28-Jun-14					 		+ - +	 		····	 	
Execution												 				
Trip 1											+-+	 		·	 	
SOBI_IL_0011340	Transit		28-Jun-14	28-Jun-14										1	1	
SOBI_IL_0011050	PreSurvey		28-Jun-14*	29-Jun-14		dd 					+-+	 		····	 	
SOBI_IL_0011060	Rock Laying		29-Jun-14	29-Jun-14								 		1	1	
SOBI_IL_0011510	Transit		29-Jun-14	30-Jun-14			- +				+ - +	 		····		
Trip 2																
SOBI_IL_0011490	Vessel Loadout		30-Jun-14	30-Jun-14								 				
SOBI_IL_0011520	Transit		30-Jun-14	30-Jun-14				· · · ·				 				
SOBI_IL_0011470	Rock Laying		30-Jun-14	01-Jul-14												
SOBI_IL_0011070	Post Survey		01-Jul-14	01-Jul-14												
SOBI_IL_0011530	Transit		01-Jul-14	01-Jul-14								1 				
DE-MOB.									1	1						
				File CODI							5.				D	
Remaining Work	♦ Milestone % Complete	, P i	age 1 of 8	File: SOBI							Date				Revis	

Remaining Wo	rk	•	Milestone	% Complete	Page 1 of 8	File: SOBI	Date	
8		•			-			
Critical Remain	ning Work		UDF Baseline MS			Baseline:	1	
Remaining Lev	el of Effort		UDF Baseline					
						Data Date: 01-Jan-11		

				[Mus	kr	at	Fa	lls Pr	oject	- CE /out:	-4 SC	HAR BASE	ev	. <mark>2 (</mark>	Pub tallati	lic)	che	du	le
																or s ackag				
																Printe				
		4	2014		1.1				201				1001		201)17
	4	1	၂ ၂	AS		J	H	4	J			J		4	J			Р	J	+
				1 1 1												1				
5		RΤ Γ	MIL	ESTO	NE		, , ,		φ ς	ОВІ С О		₹A	ст с	AB		ÍSTA	ĪĪĀ	TIC)N	ST
- - - -				1 1 1 1	1		 		• 3	1	1			1		LEST	1			517
4 1 1					-		4 1 1 1				-					⊨ 			-	
1		1		1			1													
-		-																	1	
 					-		 				-l		 	4 _		 			l.	
	nnl		on N	лilest	-		 						 			 				
							 									 - 				
		1					1													
-																 				
				, , , ,	 		- - - -						1 1 1 1			 				
							 									 			\	
				1 1 1 1			 									- - - -				
							 						 	- + -		 				
				1 1 1 1			- - - -									1 1 1 1				
1 - 1 1		-	•	VESSE		R	1.//						 	·		 - - -				
				V L 331					• • • • • • •										-	
 _			 	 			 						 	4 _		 	L -		L	
			'	1 1 1 1			1 1 1 1									 				
		1		• • • •			, , ,						 -				 		1. 1 1	
		- - - -	 											4 _			L -			
		1	I	1 1 1 1						1										
-							 									 				
																- 				
 		1	I	1 1 1 1			1									1				
1 -			1													 - - -				
- 				, 			, , ,						 	- + -			+-		!-	
				1 1 1 1													 			
				Revisio	n								Chec	(pd		^-	ppro	VDY	1	
				NEVISIC	/11									.eu		А	μμιΟ	veu		

ity ID	Activity Name	Start	Finish	2011		2012			2013			20
				JELAJJ			NJ		JJAS		JELA	Ľ
SOBI_IL_0011080	Equipment Offload	01-Jul-14	02-Jul-14									1
IDD (Horizontal D	Directional Drilling)											
SOBI_IL_0011600	Pre-Works for HDD	22-Jul-13	21-Aug-13									
NL Side												
Hole for Cable 1												1
SOBI_IL_0011420	Mobilization	21-Aug-13	10-Sep-13									
SOBI_IL_0011120	Rigging Drill Rig - Hole 1	10-Sep-13	10-Oct-13								1	
SOBI_IL_0011130	Drilling Hole - Hole 1	10-Oct-13	17-Feb-14		· · · · · · · · · · · · · · · · · · ·						— 	
Hole for Cable 2		,										
SOBI_IL_0011210	Rigging Drill Rig - Hole 2	17-Feb-14	19-Mar-14									
SOBI_IL_0011250	Drilling Hole - Hole 2	19-Mar-14	27-Jul-14					+			1	
Hole for Cable 3		,										
SOBI_IL_0011220	Rigging Drill Rig - Hole 3	27-Jul-14	16-Aug-14		++	·		+				
SOBI_IL_0011240	Drilling Hole - Hole 3	16-Aug-14	24-Dec-14									
SOBI_IL_0011260	De-Mob Hole 3	24-Dec-14	03-Jan-15			· !					- J	
SOBI_IL_0011430	DRILLING PROGRAM COMPLETION, NL SIDE		04-Jan-15									
abrador Side												1
Hole for Cable 1												
SOBI_IL_0011620	Mobilization	21-Aug-13	10-Sep-13			·		+				
SOBI_IL_0011270	Rigging Drill Rig - Hole 1	10-Sep-13	10-Oct-13									
SOBI_IL_0011580	Drilling Holes - Hole 1	10-Oct-13	17-Feb-14			·;;		+	(i	
Hole for Cable 2												
SOBI_IL_0011630	Rigging Drill Rig - Hole 1	17-Feb-14	19-Mar-14		· · · · · · · · · · · · · · · · · · ·	·		+				
SOBI_IL_0011650	Drilling Holes - Hole 1	19-Mar-14	27-Jul-14								🗖	
Hole for Cable 3						· I I I I I I I I		+				
SOBI_IL_0011750	Rigging Drill Rig - Hole 1	27-Jul-14	16-Aug-14								1	
SOBI_IL_0011820	Drilling Holes - Hole 1	16-Aug-14	24-Dec-14									
SOBI_IL_0011830	De-Mob Hole 1	24-Dec-14	03-Jan-15				<u>.</u>					
SOBI_IL_0011450	DRILLING PROGRAM COMPLETION, LAB. SIDE		04-Jan-15									
OCK SUPPLY / CF	RUSHING											
SOBI_IL_0011140	Rock Crushing (Initial Leveling campaign)	17-May-14	16-Jun-14			·	1					
OBI_IL_0011040	Rock Crushing (for Rock dumping campaign)	09-Oct-14*	19-Sep-15									
RANSITION COM					++	·		+		-1		⊢
SOBI IL 0011090	Transition Compounds (Before HDD)	03-Jun-13*	13-Jun-13						0			
SOBI_IL_0011100	Transition Compounds (After Rock Dumping)	31-Jul-15	16-Nov-15					+				
		0194,15	10 110 113								- - - -	
					· · · · · · · · · · · · · · · · · · ·	·		+				
SOBI_IL_0011320	CABLE INSTALLATION START MILESTONE	01-Apr-15*										
EURO MOB.						 	<u>.</u>					
SOBI_IL_0011730	Transit to Factory	01-Apr-15	04-Apr-15									
SOBI_IL_0011740	Loading at factory	04-Apr-15	14-Apr-15									
SOBI_IL_0011640	Transit to NL	14-Apr-15	23-Apr-15			·	<u> </u>	+				
		Dece 2 -60	File: SOBI		-		· · ·	Data				
Remaining Work	Milestone % Complete	Page 2 of 8	FIIE. SUBI					Date				
Critical Remaining Wo			Baseline:									_
Kemaining Level of Eff	ort UDF Baseline		Data Date: 01-	Jan-11								

Activity ID	Activity Name	Start	Finish		2011		0	2012			20	12			2014	Mus	krat Fall	s Project 2015	<u>- CE-44</u>	Rev. 2 (Public)	201
Activity ID	Activity Name	Sidii	FILISI			NDJF		JIAS		तना		JAS	TD	IF I						age 288	6 of 333	
NL MOB.										<u> </u>											4	
		22.4.45	25 4 45							- +											·	
SOBI_IL_0011160	Bunkering	23-Apr-15	25-Apr-15	_								-								1		
SOBI_IL_0011180	Equipment Transfer	25-Apr-15	26-Apr-15																·		· · · · · · · · · · ·	
SOBI_IL_0011680	Personnel Change	26-Apr-15	27-Apr-15									-								1		
Additional Prep. W	/ork								. <u>.</u>													
SOBI_IL_0011230	Transit	27-Apr-15	29-Apr-15																			
SOBI_IL_0011200	Pre-Survey	31-May-15	01-Jun-15*		i i i I I I I													l [
Leveling																						
SOBI_IL_0011280	Matressing	01-Jun-15	01-Jun-15								 	¦				 		I		<u>.</u>		
SOBI_IL_0011290	Sandbagging	01-Jun-15	02-Jun-15									-						1				
EXECUTION											1	1										
Cable 1										- +		· -¦ 			·÷;- ¦							
SOBI_IL_0011300	Cable Pull-in, Side 1	03-Jun-15	05-Jun-15									-						1		1		
SOBI_IL_0011330	Cable Laying	05-Jun-15	06-Jun-15						·	- +		· -i						1				
SOBI_IL_0011400	Cable Abandonment at join location	06-Jun-15	06-Jun-15									1						1				
SOBI_IL_0011920	Cable pull side 2	06-Jun-15	08-Jun-15															1			· • • • • • • • • • • • • • • • • • • •	
SOBI_IL_0012020	Cable laying	08-Jun-15	10-Jun-15									- - -										
SOBI_IL_0012500	Cable recovery	10-Jun-15	10-Jun-15						· · ·	- +								T :			· L L I I I	
SOBI_IL_0011930	Cable join	10-Jun-15	16-Jun-15									-										
SOBI_IL_0011690	Testing	14-Jun-15	17-Jun-15						·									1				
SOBI_IL_0011940	Cable abandon	16-Jun-15	17-Jun-15									-						1				
SOBI_IL_0011700	Surveying	17-Jun-15	17-Jun-15							- 1		· - i									· - -	
Cable 2	Surveying	17-3011-13	17-juii-15																			
SOBI_IL_0011350	Cable Pull-in, Side 1	17-Jun-15	19-Jun-15		,					-+		· -¦						1		+	·	
SOBI_IL_0011360	Cable Laying	19-Jun-15	20-Jun-15															1				
SOBI_IL_0011390	Cable Abandonment at join location	20-Jun-15	21-Jun-15		+ + +					- +								1			· • • • • • • • • • • • • • • • • • • •	
SOBI_IL_0011960	Cable pull-in side 2	21-Jun-15	23-Jun-15									-										
SOBI_IL_0011970	Cable laying	23-Jun-15	24-Jun-15						·									1				
SOBI_IL_0011980	Cable recovery	24-Jun-15	24-Jun-15								1	-										
SOBI_IL_0012510	Cable join	24-Jun-15	01-Jul-15							- +					÷						·	
SOBI_IL_0011370	Testing	28-Jun-15	01-Jul-15									-						1				
SOBI_IL_0012520	Cable abandon	01-Jul-15	01-Jul-15							- +					÷						·	
SOBI_IL_0012320	Surveying	01-Jul-15	02-Jul-15									-										
Cable 3	Surveying	01-301-13	02-301-13							- +											·	
					: : :								i	i i				i i		i i	i i	
	Cable Pull-in Side 1	02-Jul-15	<u>04-lul</u> -15						ł		1			1	1 1				i i			
SOBI_IL_0011440	Cable Pull-in, Side 1	02-Jul-15	04-Jul-15							- +	-							I		+	·	
SOBI_IL_0011660	Cable Laying	04-Jul-15	05-Jul-15	_				 		- +	-		 									
SOBI_IL_0011660 SOBI_IL_0011410	Cable Laying Cable Abandonment at join location	04-Jul-15 05-Jul-15	05-Jul-15 05-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990	Cable LayingCable Abandonment at join locationCable pull-in side 2	04-Jul-15 05-Jul-15 05-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable laying	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15																		·	
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable layingCable recovery	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable layingCable recoveryCable join	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 16-Jul-15																			· · · · · · · · · · · · · · · · · · ·
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable layingCable recoveryCable joinTesting	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670 SOBI_IL_0012540	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable layingCable recoveryCable joinTestingCable abandon	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15 16-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670	Cable LayingCable Abandonment at join locationCable pull-in side 2Cable layingCable recoveryCable joinTesting	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15																			
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670 SOBI_IL_0012540 SOBI_IL_0011720	Cable Laying Cable Abandonment at join location Cable pull-in side 2 Cable laying Cable recovery Cable join Testing Cable abandon Surveying	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15 16-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15								e					evision			Che	ecked	Approv	
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670 SOBI_IL_0011540 SOBI_IL_0011720	Cable Laying Cable Abandonment at join location Cable pull-in side 2 Cable laying Cable recovery Cable join Testing Cable abandon Surveying	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15 16-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15												R	evision			Che	ecked	Approv	red
SOBI_IL_0011660 SOBI_IL_0011410 SOBI_IL_0011990 SOBI_IL_0012000 SOBI_IL_0012010 SOBI_IL_0012530 SOBI_IL_0011670 SOBI_IL_0012540 SOBI_IL_0011720	Cable Laying Cable Abandonment at join location Cable pull-in side 2 Cable laying Cable recovery Cable join Testing Cable abandon Surveying	04-Jul-15 05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 09-Jul-15 13-Jul-15 16-Jul-15	05-Jul-15 05-Jul-15 07-Jul-15 09-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15 16-Jul-15								e				R	evision			Che	ecked		

Remaining Work	•	Milestone	% Complete	Page 3 of 8	File: SOBI	Date	
-	•			_			
Critical Remaining Work	Δ	UDF Baseline MS			Baseline:		
Remaining Level of Effort		UDF Baseline					
					Data Date: 01-Jan-11	í	

												Mus	<u>krat Falls Project - (</u>			
Activity ID	Activity Name	Start	Finish		2011		2012		2013	ant		2014	2015	Page	2016 of 3	33 201
					JJAS					9	<u> </u>				JJAS	<u> </u>
SOBI_IL_0011770	Transit	16-Jul-15	17-Jul-15		, , , , , , , , , , , , , , , , , , ,	+							· · · · · · · · · · · · · · · · · · ·			
SOBI_IL_0011780	NL De-MOB.	17-Jul-15	19-Jul-15	_												
SOBI_IL_0011790	Transit	19-Jul-15	26-Jul-15		¦ 			+				· · · · · · · · · · · · · · · · · · ·				
SOBI_IL_0011800	Equipment Load-out	26-Jul-15	28-Jul-15													
SOBI_IL_0011810	Transit from Factory	28-Jul-15	31-Jul-15			++-						· · · · · · · · · · · · · · · · · · ·				
Cable Installation																
SOBI_IL_0011950	CABLE INSTALLATION COMPLETE		31-Jul-15			+								INSTALLAT		PLEIE
ROCK BERM																
Rock Laying (Vess	el#1)- (Trips, approx. 17,500 t/load)															
MOB.																
SOBI_IL_0011480	Personnel Change	08-Jun-15*	08-Jun-15													
SOBI_IL_0011540	Equipment Loadout	08-Jun-15	08-Jun-15		 											
SOBI_IL_0011550	Rock Loading (L1)	08-Jun-15*	09-Jun-15													
SOBI_IL_0011910	VESSEL ARRIVAL TO NL	08-Jun-15*			· · · · · · · · · · · · · · · · · · ·								◆ VESSEL A	RRIVAL TO I	NL	
Load 1																
SOBI_IL_0012030	Transit	08-Jun-15	09-Jun-15		 											
SOBI_IL_0012040	Rock laying	17-Jun-15	18-Jun-15										1			
	Transit	18-Jun-15	19-Jun-15			++-		+-+				·				
Load 2																
SOBI_IL_0012050	Rock Loading (L2)	19-Jun-15	20-Jun-15								-					
SOBI_IL_0012060	Transit	20-Jun-15	21-Jun-15										I I I			
SOBI_IL_0012070	Rock laying	21-Jun-15	22-Jun-15			++-										
SOBI_IL_0012580	Transit	22-Jun-15	23-Jun-15													
Load 3			20 5411 15			++-										
SOBI_IL_0012080	Rock Loading (L3)	25-Jun-15	26-Jun-15													
SOBI_IL_0012090	Transit	26-Jun-15	27-Jun-15									· · · · · · · · · · · · · · · · · · ·	·			
SOBI_IL_0012100	Rock laying	27-Jun-15	28-Jun-15													
SOBI_IL_0012590		28-Jun-15	29-Jun-15			+			$\begin{array}{c} - \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \end{array} \\ \begin{array}{c} 1 \\ 1 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 1 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}				- -			
Load 4	Tursic	20 Juli 15	25 3411 15													
SOBI_IL_0012110	Rock Loading (L4)	01-Jul-15	02-Jul-15			++-										
SOBI_IL_0012120	Transit	01-Jul-15	03-Jul-15	-												
SOBI_IL_0012120	Rock laying	03-Jul-15	03-Jul-15		 	+	 									
SOBI_IL_0012130	Transit	03-Jul-15	04-Jul-15	-												
Load 5	Transit	04-301-13	03-Jul-13		 		· · · · · · · · · · · · · · · · · · ·									
	Pack Loading (LE)	07 101 15	08 Jul 15									i i i I I I I I I				
SOBI_IL_0012140	Rock Loading (L5)	07-Jul-15	08-Jul-15													
SOBI_IL_0012150	Transit Rock Javing	08-Jul-15	09-Jul-15													
SOBI_IL_0012160	Rock laying	09-Jul-15	10-Jul-15													
SOBI_IL_0012610	Transit	10-Jul-15	11-Jul-15													
	Park Londing (LC)	40 1.145	14 1.1 45		, , 		· · · · · · · · · · · · · · · · · · ·									
SOBI_IL_0012170	Rock Loading (L6)	13-Jul-15	14-Jul-15													
SOBI_IL_0012180	Transit	14-Jul-15	15-Jul-15		, , , , , , , , , , , , , , , , , , ,	÷	· · · · · · · · · · · · · · · · · · ·									
SOBI_IL_0012190	Rock laying	15-Jul-15	16-Jul-15													
SOBI_IL_0012620	Transit	16-Jul-15	17-Jul-15		!	÷										
Load 7																
SOBI_IL_0012200	Rock Loading (L7)	19-Jul-15	20-Jul-15							1						
Remaining Work	◆ ◆ Milestone % Complete	Page 4 of 8	File: SOBI					Da	ite			Revision		Checked	Ар	proved
Critical Remaining Wo			Baseline:													
Remaining Level of Eff	fort UDF Baseline		Data Date: 01	-Jan-11												

y ID	Activity Name	Start	Finish	2011	20 ⁻	12		2013		2014	2	015	CE-44 Rev. 2 Page 29	16	2 2
				JF A JJAS			JF 4	JJAS			JFA	JJAST	D J F A L	JAS	
SOBI_IL_0012210	Transit	20-Jul-15	21-Jul-15	╺ <mark>┥┊┊╶┊┊╶┊┊</mark>	<mark>╀╺╴╀╶╀╺┖╺╴╄╺╸┺</mark>				<mark>↓ ↓ ↓ ↓ ↓</mark>	<mark>└╶└╶└╶└╶╵</mark>				╘╄┺┺╄	
SOBI_IL_0012220	Rock laying	21-Jul-15	22-Jul-15									I			
OBI_IL_0012630	Transit	22-Jul-15	23-Jul-15		+		+-+			 					
ad 8			25 541 15												
SOBI_IL_0012230	Rock Loading (L8)	25-Jul-15	26-Jul-15							 					+
SOBI_IL_0012240	Transit	26-Jul-15	27-Jul-15												-
SOBI_IL_0012250	Rock laying	27-Jul-15	28-Jul-15		· · · · · · · · · · · · · · · · · · ·					 		ii			L
SOBI_IL_0012640	Transit	28-Jul-15	29-Jul-15									(
Load 9			10 000 10		±			· <mark> </mark>				<u>-</u>			
SOBI_IL_0012260	Rock Loading (L9)	31-Jul-15	01-Aug-15									i i			1
SOBI_IL_0012270	Transit	01-Aug-15	02-Aug-15		++										
SOBI_IL_0012280	Rock laying	02-Aug-15	03-Aug-15							, , , , , , , , , , , , , , , , , , ,					
SOBI_IL_0012650	Transit	03-Aug-15	04-Aug-15		++		+-+			 					
Load 10		00710210	017/08/10												
SOBI_IL_0012290	Rock Loading (L10)	06-Aug-15	07-Aug-15							 					+
SOBI_IL_0012300	Transit	07-Aug-15	08-Aug-15									1			
SOBI_IL_0012310	Rock laying	08-Aug-15	09-Aug-15		· · · · · · · · · · · · · · · · · · ·			 		L L					L
SOBI_IL_0012660	Transit	09-Aug-15	10-Aug-15									1			
.oad 11		05714515	10 //46 15	i	<u>.</u>										
SOBI_IL_0012320	Rock Loading (L11)	12-Aug-15	13-Aug-15									1			1
SOBI_IL_0012320	Transit	13-Aug-15	14-Aug-15		++++		+ - +			 					
SOBI_IL_0012330	Rock laying	13 Aug 15	15-Aug-15												
SOBI_IL_0012670	Transit	15-Aug-15	16-Aug-15		+		+ - +			 					
Load 12		13-Aug-13	10-Aug-13												
SOBI_IL_0012350	Rock Loading (L12)	18-Aug-15	19-Aug-15		· · · · · · · · · · · · · · · · · · ·			 		 					
SOBI_IL_0012350	Transit	19-Aug-15	20-Aug-15							 I I I I I I I I I					1
SOBI_IL_0012300	Rock laying	20-Aug-15	20-Aug-15			l		 	 	 				L L 	-
SOBI_IL_0012680	Transit	21-Aug-15	21-Aug-15												1
Load 13		21-Aug-15	22-Aug-13												ļ
SOBI_IL_0012380	Rock Loading (L13)	24-Aug-15	25-Aug-15												
SOBI_IL_0012380	Transit	24-Aug-15 25-Aug-15	25-Aug-15 26-Aug-15												
SOBI_IL_0012390	Rock laying	26-Aug-15	20-Aug-15 27-Aug-15												
SOBI_IL_0012400	Transit	20-Aug-15	27-Aug-15 28-Aug-15												
Load 14	Tansic	27-Aug-15	28-Aug-15												
SOBI_IL_0012410	Rock Loading (L14)	30-Aug-15	31-Aug-15												
SOBI_IL_0012410	Transit	31-Aug-15	01-Sep-15												1
SOBI_IL_0012420		01-Sep-15	01-Sep-15 02-Sep-15		· · · · · · · · · · · · · · · · · · ·			 							
SOBI_IL_0012430	Rock laying Transit	01-Sep-15	02-Sep-15 03-Sep-15							, , , , , I I I I I I I I I					
.oad 15	Transit	02-369-15	05-5ep-15		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·							
	Deck Londing (L15)	07 6 15	00 5 15							i i i I I I I I I I I I					
SOBI_IL_0012440	Rock Loading (L15)	07-Sep-15	08-Sep-15		; ;					 					
SOBI_IL_0012450	Transit	08-Sep-15	09-Sep-15												1
SOBI_IL_0012460	Rock laying	09-Sep-15	10-Sep-15		++					, , , , , , , , , , , , , , , , , , ,					
SOBI_IL_0012710	Transit	10-Sep-15	11-Sep-15									•			
Load 16		40.0 /-	44.6		+ + - +		-			, I I I I F				 - 	
SOBI_IL_0012470	Rock Loading (L16)	13-Sep-15	14-Sep-15												<u> </u>
		/ -	File: SOBI				Data			Revision			Checked	Appro	
Remaining Work	◆ ♦ Milestone	Page 5 of 8	File: SOBI				Date			Revision			Спескей	Аррго	rovi
		Page 5 of 8	Baseline:				Date			Revision			Checked	Аррг	<u>rov</u>

Activity ID	Activity Name	Start	Finish		2011			2012			2013		20	014	Muskr	at Falls	Project	t - CE-4	14 Rev. 2	(Public	201
		Sidii	FILIST				FIA					AST		JIAIS		FIAT			Page 29	1 of 33	
SOBI_IL_0012480	Transit	14-Sep-15	15-Sep-15																		
SOBI_IL_0012490	Rock laying	15-Sep-15	16-Sep-15		 		 - 	·					 			, , , , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·	L L 	
SOBI_IL_0012430	Transit	16-Sep-15	17-Sep-15	-																	
Post Survey		10-3ep-13	17-3ep-13				, , , , , , , , , , , , , , , , , , ,						 								
SOBI_IL_0011760	Post Survey (Rock Dumper #1)	17-Sep-15	17-Sep-15										1								
De-MOB.	Post Survey (Rock Dulliper #1)	17-Sep-15	17-Sep-15					·		+			 								·
SOBI_IL_0011470a10		17-Sep-15	19-Sep-15														1				
	el #2)- (Trips, approx. 17,500 t/load)	17-Sep-15	19-Sep-15							÷			 								·
MOB.													1								
	Dereannel Change	00 lup 15*	00 kup 15				 	·		1 +			 						 +		
SOBI_IL_0011560	Personnel Change	09-Jun-15*	09-Jun-15	_																	
SOBI_IL_0011570	Equipment Loadout	09-Jun-15	09-Jun-15										 L						 	L L	
SOBI_IL_0011610	Rock Loading (L1)	11-Jun-15*	12-Jun-15																		
		40.1 45	42.1 45				 -			$\frac{1}{1}$ $\frac{1}{1}$			 						 		
SOBI_IL_0012740	Transit	12-Jun-15	13-Jun-15	_																	
SOBI_IL_0012750	Rock laying	13-Jun-15	14-Jun-15							$\frac{1}{1} \frac{1}{1}$			 								
SOBI_IL_0012760	Transit	14-Jun-15	15-Jun-15																		
Load 2							· · · · · · · · ·	·		+			 								
SOBI_IL_0012770	Rock Loading (L2)	22-Jun-15	23-Jun-15	_																	
SOBI_IL_0012780	Transit	23-Jun-15	24-Jun-15			- + + -	 	·		+			 				•		 +		+
SOBI_IL_0012790	Rock laying	24-Jun-15	25-Jun-15									1									
SOBI_IL_0012800	Transit	25-Jun-15	26-Jun-15				 						 				••••		· · · · · · · · · · · · · · · · · · ·		L
Load 3												1									
SOBI_IL_0012810	Rock Loading (L3)	28-Jun-15	29-Jun-15										 				 		<u>+</u>		
SOBI_IL_0012820	Transit	29-Jun-15	30-Jun-15										1								
SOBI_IL_0012830	Rock laying	30-Jun-15	01-Jul-15										 			¦ \	 		; ;;		
SOBI_IL_0012840	Transit	01-Jul-15	02-Jul-15										1	1							
Load 4										+			 								
SOBI_IL_0012850	Rock Loading (L4)	04-Jul-15	05-Jul-15	_									1								
SOBI_IL_0012860	Transit	05-Jul-15	06-Jul-15			- +	 	; 		i i i i +			 						i i +		, +
SOBI_IL_0012870	Rock laying	06-Jul-15	07-Jul-15														1				
SOBI_IL_0012880	Transit	07-Jul-15	08-Jul-15										 						· · ·		
Load 5													1								
SOBI_IL_0012890	Rock Loading (L5)	10-Jul-15	11-Jul-15		 		 			1 1 1	!-		 			 	1:		 		
SOBI_IL_0012900	Transit	11-Jul-15	12-Jul-15																		
SOBI_IL_0012910	Rock laying	12-Jul-15	13-Jul-15		 		 			$\frac{1}{1}$ $\frac{1}$			 			¦			 		
SOBI_IL_0012920	Transit	13-Jul-15	14-Jul-15														I				
Load 6					 			, , , , ,				 	 				 				
SOBI_IL_0012930	Rock Loading (L6)	16-Jul-15	17-Jul-15										1				- E				
SOBI_IL_0012940	Transit	17-Jul-15	18-Jul-15		 		 	 		1 1 1 1 1 1 + 1	 -	 -	 	, , , ,		 	l¦		 +	 	
SOBI_IL_0012950	Rock laying	18-Jul-15	19-Jul-15								1						I				
SOBI_IL_0012960	Transit	19-Jul-15	20-Jul-15		· · · · · · · · · · · · · · · · · · ·		 				 	 	 			 	Ę		· · · · · · · · · · · · · · · · · · ·	 	
Load 7											1										
SOBI_IL_0012970	Rock Loading (L7)	22-Jul-15	23-Jul-15										L				li .				
SOBI_IL_0012980	Transit	23-Jul-15	24-Jul-15						Ī								l				
SOBI_IL_0012990	Rock laying	24-Jul-15	25-Jul-15														l				<u>. </u>
Remaining Work	Milestone Milestone Milestone	Page 6 of 8	File: SOBI							Date			 	Revis	ion				Checked	Appr	roved
Critical Remaining Work		-																			
Remaining Level of Effc			Baseline:																		
			Data Date: 01	-Jan-11									 								

tivity ID	Activity Name	Start	Finish	2011			201	2			2013			2014	Musk	rat Fall	<u>s Proje</u> 2015	ect - CE	-44 Rev. Page 2		ic)	20
	Activity Name	Otart	1 111311			ND	JFIA J.		NU	FIA					IN .			817	Page 2	92 of 3	33	
SOBI_IL_0013000	Transit	25-Jul-15	26-Jul-15										<u>, , , ,</u>							<u>, 1 1 1</u>	+++	4
Load 8					1																	
SOBI_IL_0013010	Rock Loading (L8)	28-Jul-15	29-Jul-15		- +	++				 - 	· · · · · · · · · · · · · · · · · · ·		·			·	····i					
SOBI_IL_0013020	Transit	29-Jul-15	30-Jul-15														i					
SOBI_IL_0013030	Rock laying	30-Jul-15	31-Jul-15									·				·	····;					
SOBI_IL_0013040	Transit	31-Jul-15	01-Aug-15		1												i					
Load 9			01746910																			
SOBI_IL_0013050	Rock Loading (L9)	03-Aug-15	04-Aug-15	-	1												i i					
SOBI_IL_0013060	Transit	04-Aug-15	05-Aug-15			++											·····					
SOBI_IL_0013070	Rock laying	05-Aug-15	06-Aug-15	-													į					
SOBI_IL_0013080	Transit	06-Aug-15	07-Aug-15			<u>+</u> +										·	····i					
Load 10		000000	07 7 46 10																			
SOBI_IL_0013090	Rock Loading (L10)	09-Aug-15	10-Aug-15		+ '	++				 - 			·			·	····-¦-·					
SOBI_IL_0013100	Transit	10-Aug-15	11-Aug-15		1																	
SOBI_IL_0013110	Rock laying	11-Aug-15	12-Aug-15		+					 - 							····-¦					
SOBI_IL_0013120	Transit	11 Aug 15	13-Aug-15					1					: :			1	1					
Load 11		12 Aug 13	13 Aug 13							 			·									
SOBI_IL_0013130	Rock Loading (L11)	15-Aug-15	16-Aug-15		1												1					
SOBI_IL_0013140	Transit	16-Aug-15	17-Aug-15			÷+							·			·	·····					
SOBI_IL_0013140	Rock laying	17-Aug-15	17-Aug-15 18-Aug-15	-	1												1					
SOBI_IL_0013160	Transit	17-Aug-15 18-Aug-15	19-Aug-15			÷+										·	·····					
Load 12		10-Aug-13	19-Aug-15																			
SOBI_IL_0013170	Rock Loading (L12)	21-Aug-15	22-Aug-15			+	$-\frac{1}{p} - \cdots - \frac{1}{p} - \cdots - \cdots$									·	¦					
SOBI_IL_0013180	Transit	21-Aug-15	22-Aug-15 23-Aug-15	-													1					
SOBI_IL_0013190	Rock laying	22-Aug-15	23-Aug-13 24-Aug-15		+																	
SOBI_IL_0013200	Transit	23-Aug-15	24-Aug-13 25-Aug-15	-									i i									
Load 13	Transit	24-Aug-13	23-Aug-13		ו ב ו			 		 - 							 		!			
SOBI_IL_0013210	Rock Loading (L13)	27-Aug-15	28-Aug-15														1					
SOBI_IL_0013220	Transit	27-Aug-15 28-Aug-15	29-Aug-15										·			·	·····					
SOBI_IL_0013220	Rock laying	29-Aug-15	30-Aug-15		1																	
SOBI_IL_0013240	Transit	30-Aug-15	31-Aug-15													·	·····					
Load 14		30-Aug-13	31-Aug-13																			
SOBI_IL_0013250	Rock Loading (L14)	31-Aug-15	01-Sep-15		+	<u>+</u> +				r						·			¦ + +			
SOBI_IL_0013260	Transit	01-Sep-15	01-Sep-15	-																		
SOBI_IL_0013200	Rock laying	01-Sep-15	02-Sep-15		+					+ -						·						
SOBI_IL_0013280	Transit	03-Sep-15	03-Sep-15	-																		
Load 15	Transit	03-3ep-13	04-3ep-13							 - 							<u>-</u>					-
SOBI_IL_0013290	Rock Loading (L14)	04-Sep-15	05-Sep-15		1	1																
SOBI_IL_0013290	Transit	04-Sep-15	05-Sep-15 06-Sep-15			+							·			·	·····					-
SOBI_IL_0013300	Rock laying	06-Sep-15	06-Sep-15 07-Sep-15		1																	
SOBI_IL_0013310		07-Sep-15	07-Sep-15 08-Sep-15			+							·			·						
Load 16	Transit	07-3ep-13	08-36b-13																			
SOBI_IL_0013330	Pock Loading (L15)	10-Sep-15	11 Son 15			<u>+</u> +							·			·						
SOBI_IL_0013330	Rock Loading (L15) Transit	11-Sep-15	11-Sep-15 12-Sep-15																			
SOBI_IL_0013340	Rock laying	11-Sep-15 12-Sep-15				<u>+</u> +						· - -						·				
3001_IL_0013330			13-Sep-15		1	i		1	; 	· · ·		i l		-	:		1	·		1		Ļ
Remaining Work	Milestone Milestone Complete	Page 7 of 8	File: SOBI							Date				Revisi	ion				Checked	Ар	proved	1
Critical Remaining Work			Baseline:																			_
Remaining Level of Effo	rt UDF Baseline		Data Date: 01	-Jan-11																		
																						_

														Muskr	at Falls P	roiect -	CE-44 Rev. 2 (P	ublic)
Ac	tivity ID	Activity Name	Start	Finish		2011		2012		2013			201	4	20	15	Page 293	of 333 2017
					JFA	JJASN	JDJFA	JJASN	JF	JJA	S D	JF	A J J	JAS N J	F A J	JAS		ASPJF
	SOBI_IL_0013360	Transit	13-Sep-15	14-Sep-15												T		
	SOBI_IL_0011380	CABLE INSTALLATION COMPLETION (WITH ROCK BERM)		19-Sep-15									-			• ¢	ABLE INSTALLATIO	ON COMPLETIO
	Post Survey																	
	SOBI_IL_0011500	Post Survey (Rock Dumper # 2)	14-Sep-15	14-Sep-15														
	De-MOB.																	
	SOBI_IL_0011470a	De-Mob.	14-Sep-15	16-Sep-15														
	SOBI_IL_0011590	Rock Protection Berm Complete		19-Sep-15												◆ R	ock Protection Be	rm Complete
	COMMISSIONING																	
	SOBI_IL_0012560	CABLE SYSTEM COMMISIOING & TESTING	19-Sep-15	19-Oct-15					1			1	1					

Remaining Work	•	Milestone	% Complete	Page 8 of 8	File: SOBI	Date	
-	•		, complete				
Critical Remaining Work	Δ	UDF Baseline MS			Baseline:	í I	
Remaining Level of Effort		UDF Baseline					
					Data Date: 01-Jan-11		

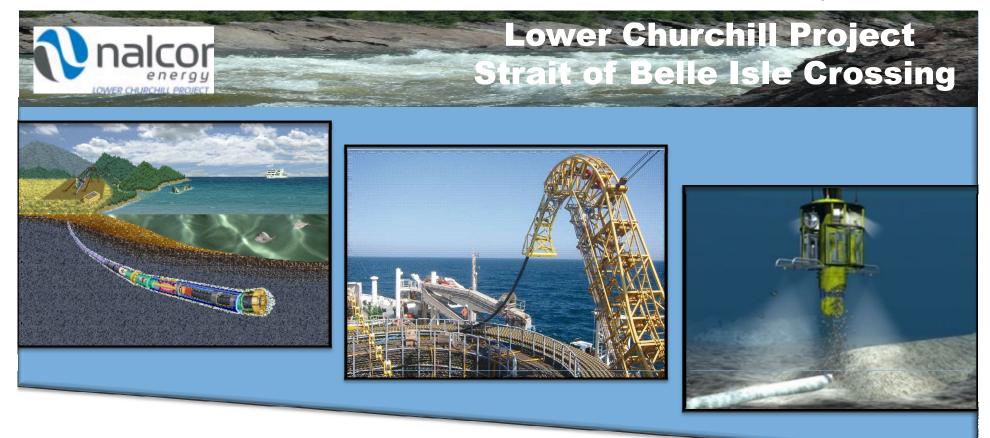
Revision	Checked	Approved

Appendix AA- Cost Estimate

Detailed cost estimate deleted from filing

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 295 of 333

Appendix AB- Repair Cost


SOBI Seabed Crossing - Conceptual Design Estimate Dec 31

o/Demob				
Mob/Demob			days	Assume MOB out of Atlantic Canada
Transit	-		days	
Vessel Mobilization rate	-		\$/day	
Excavation ROV rate			\$/day	Assume MOB out of St.John's
				01.001113
Mob / Demob Costs	\$	1,629,000	\$ CAD	
pair				
Cable Repair Joints			days	2 joints per repair
Rock Removal	-		days	
Rock Reinstatment	-		days	
Cutting, Retreival and Re-lay			days	
	+			
Length of Protection (MAX)			m	
Length of Protection (MAX) Cost Per Mattress	+		m \$ CAD	6m Cover
	-			6m Cover
Cost Per Mattress	-			6m Cover
Cost Per Mattress Number of Mattresses			\$ CAD	6m Cover Includes Vessel
Cost Per Mattress Number of Mattresses Vessel Time	-		\$ CAD days	
Cost Per Mattress Number of Mattresses Vessel Time	• 		\$ CAD	Includes Vessel
Cost Per Mattress Number of Mattresses Vessel Time Cost of Matresses Vessel day rate Joint Team	• - - - -		\$ CAD days	Includes Vessel Installation Cost
Cost Per Mattress Number of Mattresses Vessel Time Cost of Matresses Vessel day rate			\$ CAD days	Includes Vessel Installation Cost With excavating RO
Cost Per Mattress Number of Mattresses Vessel Time Cost of Matresses Vessel day rate Joint Team			\$ CAD days	Includes Vessel Installation Cost With excavating RO 6 people 24hr
Cost Per Mattress Number of Mattresses Vessel Time Cost of Matresses Vessel day rate Joint Team	\$	6,072,470	\$ CAD days \$/day	Includes Vessel Installation Cost With excavating RO

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 297 of 333

Appendix AC - Westney Risk Report

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 298 of 333

Cost & Schedule Risk Assessment St. Johns, NL November 29, 2010 – December 3, 2010

Consulting Group, Inc. www.westney.com

21-Dec-2010 Final Report

Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

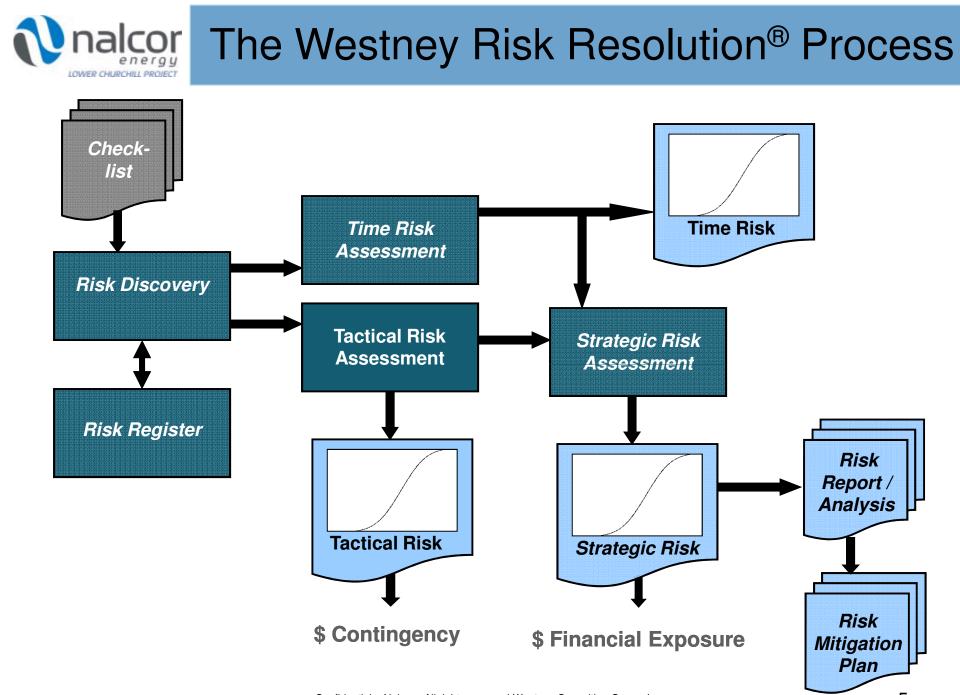
Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 299 of 333

General Information

This document contains information that is the confidential and proprietary property of Nalcor and is for the sole use of the intended recipient(s). Any use, review, reliance, dissemination, forwarding, printing or copying of this document without the express consent of Nalcor is strictly prohibited. It is important to note that the scope of work for Westney Consulting Group was for Westney to guide and facilitate the Risk Ranging Process, using the consultants' experience to ask the right questions and, where appropriate, challenge the Nalcor participant's thinking. This resulted in an outcome of the analysis that represented the best thinking and efforts of both the Nalcor participants and the consultants from Westney.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 300 of 333

Contents


Pages	1-2	Cover and General Information
Page	3	Contents
Page	4	Consultants' Comments
Page	5-6	The Westney Risk Resolution [®] Process
Page	7	Assessment Summary
Page	8	Time-Risk Assessment
Pages	9-12	Time-Risk Assumptions
Pages	13-15	Time-Risk Results
Page	16	Tactical-Risk Assessment
Pages	17-18	Tactical-Risk Assumptions
Pages	19	Tactical-Risk Results
Page	20	Strategic-Risk Assessment
Pages	21-29	Strategic-Risk Assumptions
Pages	30-33	Strategic-Risk Results
Page	34	Supplemental Information
Page	35	Predictive Range Definition
Page	36	Weather Windows for Time-Risk Activities

Consultants' Comments

- The SOBI Crossing project is in an early stage of definition and this risk assessment was performed to obtain an indication of the probabilistic outcomes of the project and calibrate the near-term activities of the project team to reduce the level of project risk well in advance of a project sanction.
- There are limited technical options for achieving project objectives. Good progress has been made defining the scope of work and plans are in place for the additional surveys, investigations, and studies to reduce the level of risk and necessary to support the level of detail needed for a quality sanction-level estimate, schedule, and Execution Plan.
- The current deterministic schedule is optimistic in the durations assumed for approval of the Island Link EA, the HDD, and the Rock Protection. Time-Risk Modelling indicates a likely slippage of 0 to 9 months for project completion. The projected slippage is due to EA delay, HDD geotechnical unknowns, and weather. Contingent activities that the project can possibly undertake to reduce slippage will be validated by more detailed investigations currently planned during 2011.
- The current cost estimate is reasonable, has a limited number of variables, and is based on good estimating practices appropriate for the current level of definition. Estimate ranging incorporated a broad spectrum of tactical possibilities around the currently defined execution strategy. More detailed definition will be developed in the investigations scheduled during 2011.
- At this early stage of the project, the level of unmitigated risk is high because of limited definition and detailed planning. The possibilities for risk mitigation, however, are also significant and currently planned activities in 2011 will validate the possible Strategic Risk mitigation strategies shown in this report. The effects of these possible risk mitigations are shown in the Strategic Risk section of this report.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 302 of 333

Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 303 of 333

Risk Discovery

The Westney Risk Discovery process involves interviewing the key knowledge holders of the project. Because of the early stage of this project, the discovery process was expanded to include a technical risk workshop to initiate a project risk register for the project. An initial project risk register was also developed for the Maritime Link.

This workshop was attended by the key SOBI project personnel and facilitated by Westney. The project team identified over 200 risks to the project and made initial qualitative assessments. These identified risks informed the subsequent Time, Tactical, and Strategic Risk ranging sessions.

The initial Risk Registers developed by the project team are not part of this report. They will be completed by the project team and used throughout the project to monitor and manage individual risks and mitigations on the project.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 304 of 333

Assessment Summary

The SOBI project schedule was analyzed on its own and does not tie into the LCP First Power milestone. The modeled results show a predictive range (P25 to P75) for Ready to Transmit Power of October 2015 to July 2016, which equates to 0 to 9 months later than the current schedule of October 2015.

Tactical Risk

Strategic Risk

The predictive range for the Tactical-Risk analysis for SOBI Crossing is \$317 million to \$384 million, with the P50 value being \$350 million.

The predictive range for the Unmitigated Risk Exposure is \$64 million to \$136 million; the predictive range for the Mitigated Risk Exposure drops to \$-2 million to \$30 million based on possible mitigation strategies. The delays are driven by several key model activities: a delay in the EA causes a delay to the start of HDD; geotechnical unknowns extend the duration of HDD on the Newfoundland side which delays the cable installation. This delays rock placement which, interrupted by winter weather, cannot resume until the spring of 2016.

The P50 value of \$350 million compares to a budgeted estimate of \$310 million, suggesting that an estimate contingency of \$40 million (13%) would be appropriate for SOBI Crossing at this stage of development.

This strategic risk assessment was performed to provide insight for the recommendation of the appropriate level of management reserve for the project.

Time-Risk Assessment

Basis of Assessment

A Time-Risk model was built for the SOBI Crossing using Microsoft Project. The model logic incorporates the dates, durations, and key dependencies that are in the current project schedule. The key activities were identified and framed by Nalcor. Parameters for the weather modeling were also identified by Nalcor.

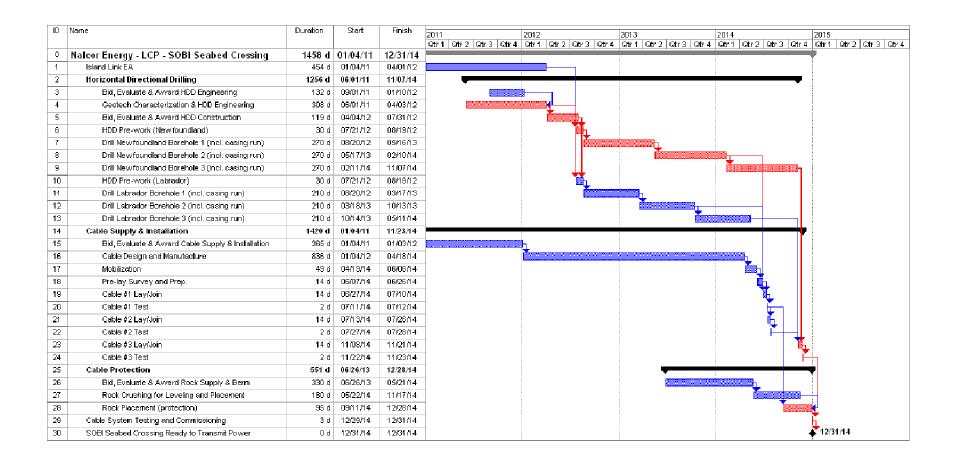
Westney consultants met with the Nalcor project team at Nalcor's St. John's office to discuss possible outcomes for each modeled activity. Final ranging was performed by the Nalcor team, but it was vetted and questioned by the Westney participants. The modeling simulation was performed by Westney using the @Risk Monte Carlo technique with 10,000 iterations.

Assessment Results

The modeled results had a predictive range for Ready to Transmit Power approximately 0 to 9 months after the currently scheduled date of October 14, 2015.

									222													87	2122															
											1				17				1	1		8	80		n	1	1	1										
									10			Ψ.							v		- 1		51		8				38									
									177		2												212			2												
					300																																	
						T	n	ł	17																					10	7							
								6.0																						-	87.	£2						
					-																								8.				9					
					100																								8		20	100						
	202									2																					-	Y				-	-	Ē
r		t			6					20			Ð	7													31			100	Ξ,	7			1000	A	100	1
			19				2015			82	0.0				ω,	353	0.00	ω.									69			1883		68.		242	10°			

These results are driven by modeled delays in several key activities, particularly the EA, as well as the HDD on the Newfoundland side which delays the cable lay. These delays result in the rock placement activity being delayed by winter weather/ice cover and completing the next year. Because of the weather issues, there is a likely probability for multiple mobilizations of the cable lay and rock placement vessels.


alcor Assumptions in the Time Risk Model

- Procurement efforts and funding (i.e., willing to make financial commitments for long lead items) will not delay award of cable manufacturing to secure a favorable manufacturing slot. Significant award slippage will likely delay Ready to Transmit Power.
- The 2011 geotechnical investigation provides sufficient information to proceed with HDD engineering and award of HDD Construction.
- The location of the Transition Compounds is established prior to the start of HDD Engineering and contract award for cable manufacturing.
- The volume of rock required for leveling and protection is obtained locally and produced in sufficient volume to support the rock placement vessel requirements.
- The construction of the Transition Compounds can be done separately and will not impact the SOBI Crossing Project.
- This analysis excludes any implications of scheduling conflicts with the Maritime Link.
- This analysis assumed that the SOBI Crossing project proceeds regardless of any delay in LCP Project Sanction.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 307 of 333

Time-Risk Model

Time-Risk Ranging

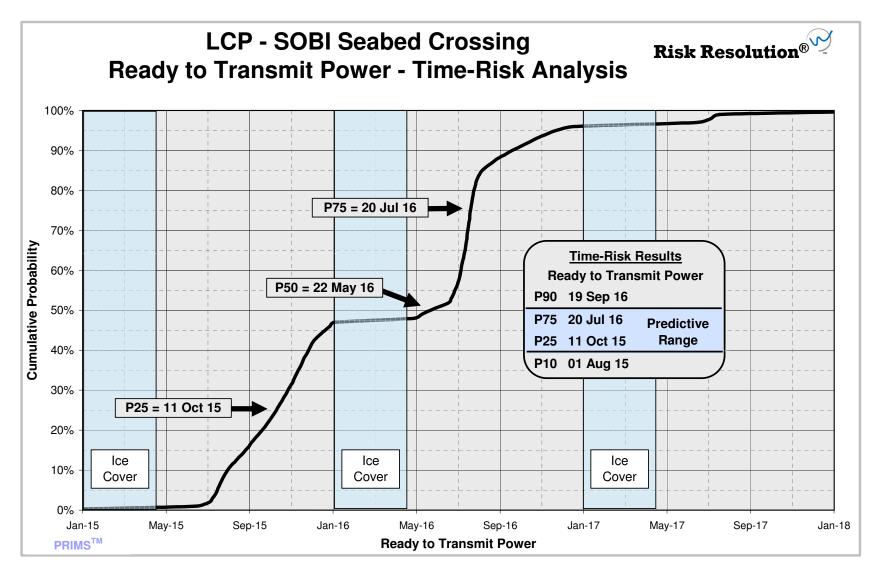
Lower Churchill Project Time-Risk Assessment Ranging Sheet - SOBI Seabed Crossing

			Time-Risk Mod	el	Change	s in Days
ID	Task Description	Duration	Start	Finish	Best	Worst
01	Island Link EA	454 d	4-Jan-11	1-Apr-12	150	456
02	Horizontal Directional Drilling	1256 d	1-Jun-11	7-Nov-14		
03	Bid, Evaluate & Award HDD Engineering	132 d	1-Sep-11	10-Jan-12	-75	45
04	Geotech Characterization & HDD Engineering	308 d	1-Jun-11	3-Apr-12	-150	150
05	Bid, Evaluate & Award HDD Construction	119 d	4-Apr-12	31-Jul-12	0	90
06	HDD Pre-work (Newfoundland)	30 d	21-Jul-12	19-Aug-12	-10	60
07	Drill Newfoundland Borehole 1 (incl. casing run)	270 d	20-Aug-12	16-May-13	-90	240
08	Drill Newfoundland Borehole 2 (incl. casing run)	270 d	17-May-13	10-Feb-14	-90	120
09	Drill Newfoundland Borehole 3 (incl. casing run)	270 d	11-Feb-14	7-Nov-14	-90	120
10	HDD Pre-work (Labrador)	30 d	21-Jul-12	19-Aug-12	-10	60
11	Drill Labrador Borehole 1 (incl. casing run)	210 d	20-Aug-12	17-Mar-13	-60	160
12	Drill Labrador Borehole 2 (incl. casing run)	210 d	18-Mar-13	13-Oct-13	-60	80
13	Drill Labrador Borehole 3 (incl. casing run)	210 d	14-Oct-13	11-May-14	-60	80
14	Cable Supply & Installation	1420 d	4-Jan-11	23-Nov-14		
15	Bid, Evaluate & Award Cable Supply & Installation	365 d	4-Jan-11	3-Jan-12	-30	90
16	Cable Design and Manufacture	836 d	4-Jan-12	18-Apr-14	-120	120
17	Mobilization	49 d	19-Apr-14	6-Jun-14		
18	Pre-lay Survey and Prep.	14 d	7-Jun-14	26-Jun-14	-8	8
19	Cable #1 Lay/Join	14 d	27-Jun-14	10-Jul-14	-4	14
20	Cable #1 Test	2 d	11-Jul-14	12-Jul-14		

21-Dec-2010 Final Report

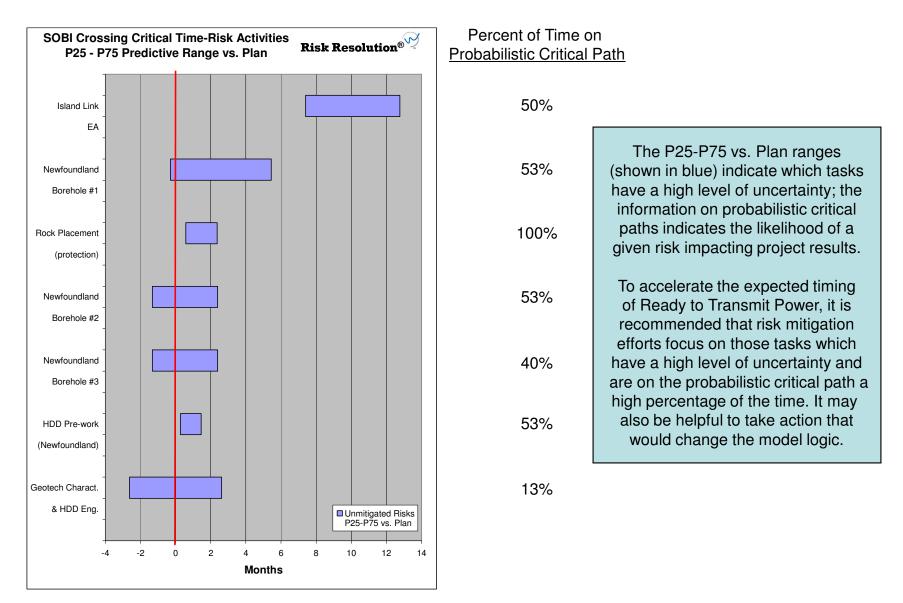
Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 309 of 333


Time-Risk Ranging

Lower Churchill Project Time-Risk Assessment Ranging Sheet - SOBI Seabed Crossing

			Time-Risk Mod	el	Changes	in Days
ID	Task Description	Duration	Start	Finish	Best	Worst
21	Cable #2 Lay/Join	14 d	13-Jul-14	26-Jul-14	-4	14
22	Cable #2 Test	2 d	27-Jul-14	28-Jul-14		
23	Cable #3 Lay/Join	14 d	8-Nov-14	21-Nov-14	-4	14
24	Cable #3 Test	2 d	22-Nov-14	23-Nov-14		
25	Cable Protection	551 d	26-Jun-13	28-Dec-14		
26	Bid, Evaluate & Award Rock Supply & Berm	330 d	26-Jun-13	21-May-14	-210	-90
27	Rock Crushing for Leveling and Placement	180 d	22-May-14	17-Nov-14	-90	0
28	Rock Placement (protection)	95 d	11-Sep-14	28-Dec-14	-8	95
29	Cable System Testing and Commissioning	3 d	29-Dec-14	31-Dec-14	-1	3
30	SOBI Seabed Crossing Ready to Transmit Power	0 d	31-Dec-14	31-Dec-14		
	Last Line					



Time-Risk Assessment Results

Time-Risk Tornado Chart

21-Dec-2010 Final Report

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 312 of 333

Time-Risk Milestones

Milestone Description	P25	P50	P75
All HDD Complete	28 Jun. 2015	26 Oct. 2015	08 Mar. 2016
Cable #2 Installed/Tested	18 Dec. 2014	09 Jul. 2015	29 Jul. 2015
Rock Placement Complete	05 Oct. 2015	10 May 2016	15 Jul. 2016

Tactical-Risk Assessment

Basis of Assessment

The Tactical-Risk Assessment considers the impact of definition and performance risks on the project cost estimate. Nalcor provided the estimate for the SOBI Crossing. Each cost estimate was broken down by major category. Adjustments were made to the categories to reflect decisions made since the estimate was published.

Westney consultants met with the Nalcor project team to discuss the Best and Worst Case ranges around the estimate for each cost category using input from Risk Discovery as key framing input. The final ranging was performed by Nalcor, but it was vetted and questioned by the Westney Participants. Westney selected the Probability distributions to use with the ranged data and ran the Monte Carlo simulation.

Assessment Results

The P50 of the Tactical-Risk Assessment equates to the cost estimate plus the recommended contingency. The Tactical-Risk Assessment yields the following results for the SOBI Crossing:

	Millions of C\$
Tactical-Risk P50:	\$350
SOBI Crossing Estimate ⁽¹⁾ :	<u>- \$310</u>
Recommended Contingenc	y: \$40 (13%)
⁽¹⁾ September 14, 2010 Estimate	

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 314 of 333

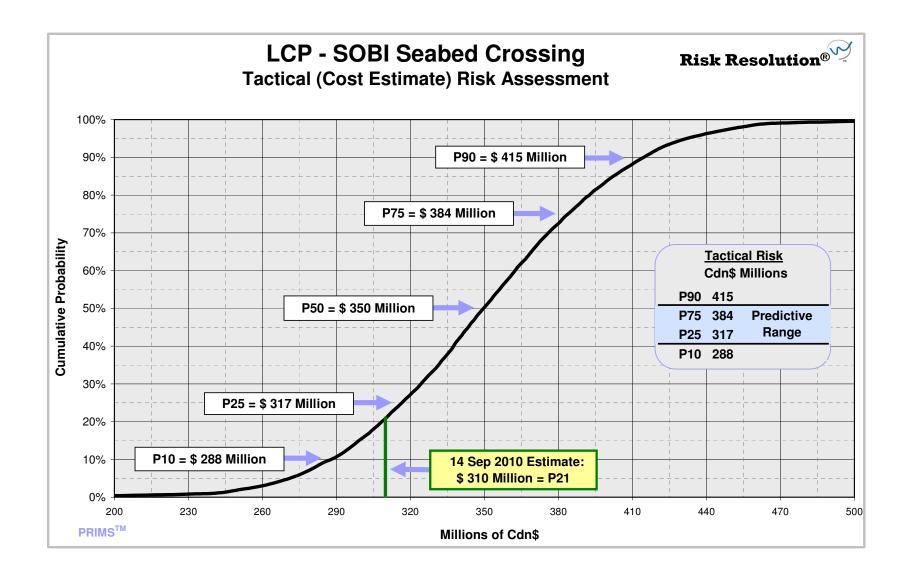
Tactical-Risk Ranging

Lower Churchill Project - SOBI Seabed Crossing								
Tactical Cost Ranging Sheet					Risk Ra	inge		
Cost Category	Original Estimate (C\$ M)	Spent to Date (C\$ M)	Special Adjust- ments (C\$ M)	Cost to be Risked (C\$ M)	Best - What % Less Could It Cost? (enter as negative)	Worst - What % More Could It Cost?	Best Cost (C\$ M)	Worst Cost (C\$ M)
		Pre/Pc	ost Survey	/				
Pre/Post Survey								
Pre/Post Survey Total, C\$ M								
	Horizonta	al Directio	nal Drillin	g Site Wo	orks			
Horizontal Directional Drilling Site Works								
HDD Site Works Total, C\$ M				0				
		Transitior	n Compou	Inds				
Cost of Compounds								
Site Access / Foteau Excavation								2,250
Transition Compounds Total, C\$ M								
		Seabe	d Leveling	9				
Cost for Rock Placement for Leveling								
Mobilization and Demobilization								
Seabed Leveling Total, C\$ M								
		Cabl	e Supply		1			
Cost for 3 Cables								
Cable Supply Total, C\$ M								

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 315 of 333

Tactical-Risk Ranging

Lower Churchill Project - SOBI Seabed Crossing								
Tactical Cost Ranging Sheet					Risk Ra	nge		
Cost Category	Original Estimate (C\$ M)	Spent to Date (C\$ M)	Special Adjust- ments (C\$ M)	Cost to be Risked (C\$ M)	Best - What % Less Could It Cost? (enter as negative)	Worst - What % More Could It Cost?	Best Cost (C\$ M)	Worst Cost (C\$ M)
	Hor	rizontal Di	rectional	Drilling				
Mobilization and Demobilization for 2 Rigs								
Contractor Submittals								
Cost for 3 Newfoundland Boreholes								
Cost for 3 Labrador Boreholes								
Vessel Cost								
Horizontal Directional Drilling Total, C\$ M								
		Cable I	nstallatio	n	-	T		
Installation Cost								
Mobilization and Demobilization								
Support Costs								
Cable Installation Total, C\$ M								
		Roc	k Berms	ſ	ſ	r		
Cost of Rock								
Rock Installation								
Mobilization and Demobilization								
Loading Facility Upgrade								
Rock Berms (three) Total, C\$ M								
		Project	Total Co	ost				
Project Total Cost, C\$ M	309,923	0	-4,084	305,839				


21-Dec-2010 Final Report

Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 316 of 333

Tactical-Risk Assessment

Strategic-Risk Assessment

Basis of Assessment

The Strategic-Risk Assessment does not include the impact of tactical risks (i.e., estimate contingency) on the costs of the Lower Churchill Project. This assessment dealt solely with CAPEX issues.

The strategic risks for the SOBI Crossing were identified and framed on a preliminary basis by the Nalcor team. Westney consultants met with the Nalcor project team to discuss possible outcomes for the unmitigated cases. The final ranging was performed by the Nalcor team, but it was vetted and questioned by the Westney participants. Mitigation strategies were endorsed by the project team. The Monte Carlo simulations were run by Westney.

Assessment Results

The Strategic Risk Exposure is the range of the costs that might be incurred that currently would not be incorporated into the estimate. A decision will be required as to whether these risks become costs in the estimate or remain as Risk Exposure above the estimate.

	Predictive Range	
	<u>P25 (mil)</u>	<u>P75 (mil)</u>
Unmitigated		
Risk Exposure	\$64	\$136
Mitigated	A A	\$00
Risk Exposure*	\$-2	\$30

*Includes costs of mitigation. All currency is in C\$.

Strategic-Risk Modeling

The following probability weightings were used in conjunction with probability distributions to analyze the Strategic Risks and the Risk Mitigations.

Classification	Probability
Remote	0% - 2%
Very Low	3% - 10%
Low	11% - 35%
Medium	36% - 64%
High	65% - 89%
Very High	90% - 97%
Almost Certain	98% -100%

Key Risks / Possible Mitigations

Probability / Impact (\$MM) Unmitigated Mitigated* *including cost of mitigation

	Definition Risks
Geotechnical evaluation of the HDD sites has not been completed	 Challenging HDD site and drilling conditions Possible Mitigation - significant geotechnical investigation/evaluation Pilot hole(s) and other bore samples Geotechnical and drilling studies Environmental impact analysis
Final locations for the Transition Compounds not established	 Delayed decisions leading to schedule slippage and cost increases Incorrect cable length order/ change during manufacturing Possible Mitigation – Early selection of sites with proper geotechnical /environmental evaluation Pilot bore and Geotechnical program
Final length and specification of subsea cable not established	 Late location of Transition Compounds Changed transmission requirements Re-routing on seabed Possible Mitigation – Early selection of sites, detailed survey of the seabed route, and Vessel Program
10-Dec-2010 Draft-For Discussion	

Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

Key Risks / Possible Mitigations

Bold Comments are Possible Mitigations

	Definition Risks (Continued)
Thickness and volume of subsea cable rock cover has not been finalized	 Late changes in the thickness of rock cover Late changes in the width of the rock berm Possible Mitigation – Long term current studies
Engineering data dependences have not been established	 2011 studies, investigations, and surveys may produce inappropriate detail or incorrect information Possible Mitigation – Detailed planning of engineering data requirements and dependencies to verify completeness of planned 2011 investigations, surveys & studies
	Enterprise Risks
EA Significantly delays Cable order and site work	 Delays placement of cable order – missed manufacturing slot – missed vessel availability Delays HDD site work - delays installation and Mechanical Completion Possible Mitigation– increase LCP team resources to allow for proactive management and support of the EA

Key Risks / Possible Mitigations

Bold Comments
are PossibleProbability / Impact (\$MM)
Unmitigated
MitigationsMitigations*including cost of mitigation

Enterprise Risks (Continued)			
Inability to attract and retain competent resources in Nalcor	 High turnover of staff Rework, errors & omissions, lack of contractor oversight Possible Mitigation – Continue recruiting experienced people, early mobilization, implement HR practices for retention such as mentoring and succession planning, competitive with other local industry practices and rates 	Medium / \$20 Very Low / \$5	
Inability to bid, select, and award contracts in a timely manner	 Project delays Inability to attract high-quality contractors Possible Mitigation – Alignment between Project Team and Supply Chain Management on coordination and requirements. Alignment with Nalcor management on funding requirements, added contracts resources 	Medium / \$30 Very Low / \$10	
Poor governance impacts project and team performance	 High turnover of project personnel Project delays Increased rework Possible Mitigation – Clear delegations of authority for both commercial and technical decision-making along 	Very Low / \$30 Remote / \$1	
10-Dec-2010 Draft-For Discussion	realistic timeframes for decisions Confidential – Nalcor - All rights reserved Westney Consulting Group, Inc.	24	

Key Risks / Possible Mitigations

Bold Comments are Possible Mitigations

	Interface	
¹⁰ Transition Compound design and construction activities impact SOBI project performance	 Interface issues with EPCM delays project Possible Mitigation – Expedite engineering/operational requirements from Transmission Team. Locate Transition compounds where interference with the SOBI project can be minimised (i.e. separation of the landing site and transition compound, linked via land trenching), Interface & MOC processes 	Low / \$10 Remote / \$1
U ate requirements change from Transmission Project	 Significant project delays Reduced operability: Possible Mitigation – Early design requirements freeze 	Low / \$100 Very Low/ \$5
	on transmission power requirements, Interface & MOC processes	

Key Risks / Possible Mitigations

Bold Comments are Possible Mitigations

	Engineering / Technical Risks	
¹² Unexpected conditions discovered after start of cable mfg. cause thermal management issues		Low / \$30 7 Low / \$5
¹³ Deviations during HDD or design errors limit ability to pull/install cable without damage	Describle Mitigation Engage experienced engineering	.ow / \$100 ote / \$25
	Execution	
14 Iceberg scour damages cable during construction	include is above towing deflection flowible installation	ote / \$30 ote / \$30
10-Dec-2010 Draft-For Discussion	Confidential – Nalcor - All rights reserved Westney Consulting Group, Inc.	26

Key Risks / Possible Mitigations

Bold Comments are Possible Mitigations

	Execution (Continued)	
15 Limited Contractor resources and poor performance	 Design errors, construction rework Project Delays / Added Cost Possible Mitigation – Early staffing and engagement, in-depth due diligence on all contractors, communications with local unions, key personnel provisions in contracts 	Low / \$30 Very Low / \$15
16 Unavailability of favorable cable manufacturing slots cause delay/added costs	 Project delays and/or added costs Use of lower tier manufacturer introduces additional risks Possible Mitigation – Early definition of cable length and specification, on-going monitoring of targeted companies' backlogs, early bid and interface, availability of early funding to secure commitment 	Very Low / \$30 Remote / \$1
Unavailability of appropriate vessels cause delay/added cost	 Project delays and/or added costs Use of lower tier manufacturer introduces additional risks Possible Mitigation – On-going monitoring of targeted vessel commitments, early bid to get flexibility, availability of early funding to secure commitments, turnkey contracting strategy of cable manufacture & install 	Very Low / \$20 Very Low / \$5
10-Dec-2010 Draft-For Discussion	Confidential – Nalcor - All rights reserved Westney Consulting Group, Inc.	27

Key Risks / Possible Mitigations

Bold Comments are Possible Mitigations Probability / Impact (\$MM) Unmitigated Mitigated* *including cost of mitigation

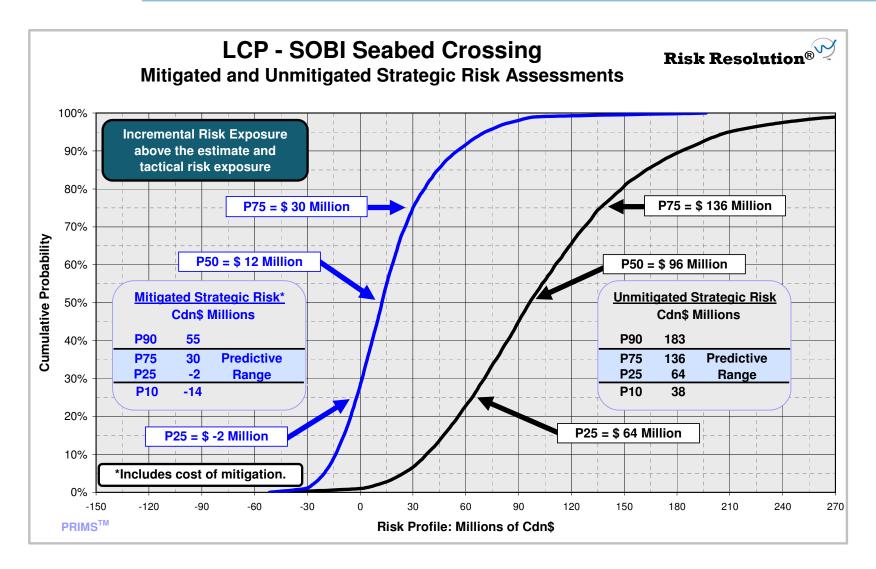
Performance issues in the commodity supply chain cause project delays	 Execution Risks (Continued) Construction delays and/or added cost Lowered productivity Possible Mitigation – detailed logistics planning by the project team and all contractors 	Medium / \$10 Very Low / \$3
Significant Weather Downtime (including currents, sea states, etc.)	 Delayed offshore cable installation / rock placement Delayed onshore construction Possible Mitigation – Start lay early/on time, detailed planning and timely execution to limit the work 	Medium / \$25 Very Low / \$5
	performed during adverse weather periods, shift liability for weather downtime to contractor	

Other Risks

Other risks such as Foreign Exchange and Inflation were discussed. Because they will be addressed by the Lower Churchill Project as a whole they were not included in this analysis.

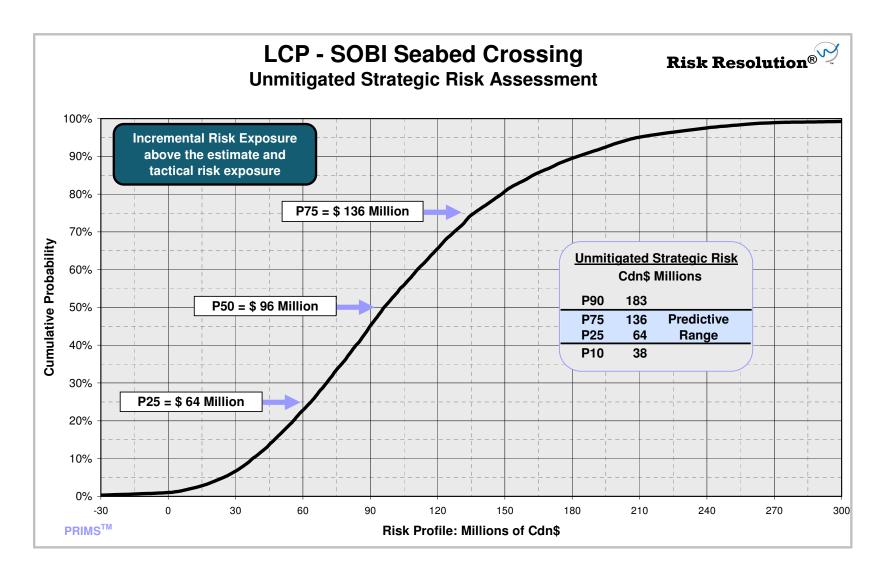
Key Risks / Possible Mitigations

Bold Comments
are Possible
Mitigations

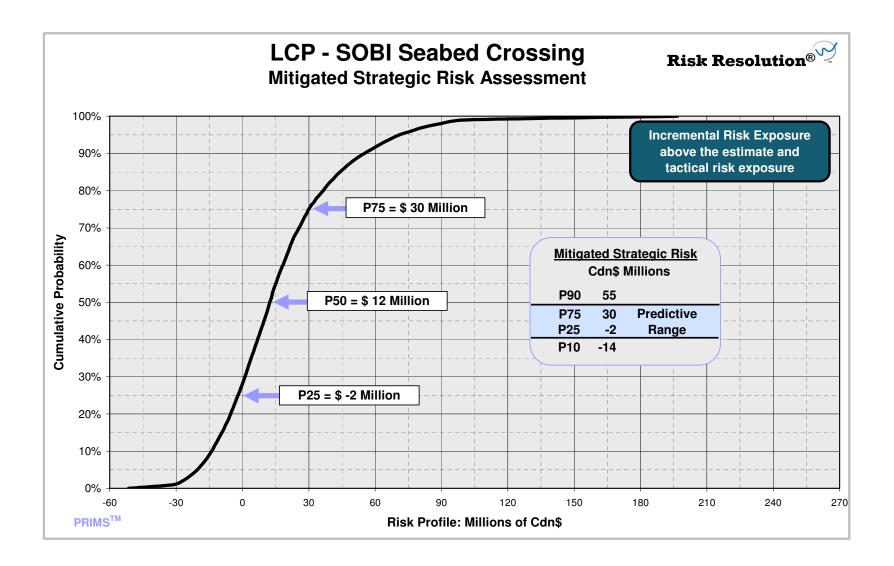

Impact (\$MM) Unmitigated Mitigated* *including cost of mitigation

Deviation from guidelines set forth in the EA that must be changed after EA sanction (ex change in cable route outside of EA approved zone	 Opportunities / Risks Possible change in routing reduces/increases length of cable & rock cover Possible Mitigation/Enabling Activity – Review EIS wording to allow maximum flexibility in routing 	-\$20 - +\$10 -\$20 - \$0
Issues arising due to marine habitat compensation/credits	 Cable lay / rock cover will change the existing marine habitat. However the installation may provide an improved environment for desirable species. Enabling Activity– Early engagement of appropriate environmental authorities and early application for possible credits 	-\$5 - +\$5 -\$5 - \$0

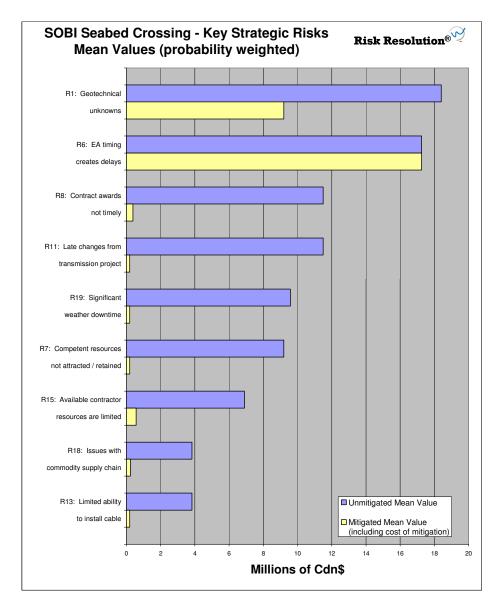
Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 327 of 333


Strategic Risk Exposure

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 328 of 333


Unmitigated Risk Exposure

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 329 of 333



Mitigated Risk Exposure

21-Dec-2010 Final Report

Strategic-Risk Tornado Chart

21-Dec-2010 Final Report

Confidential – Nalcor - All rights reserved Westney Consulting Group, Inc.

Muskrat Falls Project - CE-44 Rev. 2 (Public) Page 331 of 333

Supplemental Information

21-Dec-2010 Final Report

Confidential - Nalcor - All rights reserved Westney Consulting Group, Inc.

Predictive Range

Predictive Range: The term predictive range is used throughout this report when describing the results of Monte Carlo simulations for all types of risk assessments. Specifically, the predictive range refers to the P25 to P75 band of results for a given assessment. Because the predictive range is comprised of the middle 50% of the results, it is usually thought to be the most relevant indicator of future outcomes when assessing a modeled situation.

alcor Weather Windows - Time-Risk Activities

The following weather windows are used in the Time-Risk analysis:

For Task 18: Pre-lay Survey and Prep. Task 19: Cable #1 Lay/Join Task 21: Cable #2 Lay/Join Task 23: Cable #3 Lay/Join Task 28: Rock Placement (protection)

January 1 – April 15: Ice Cover - No offshore activity April 16 – June 15: 25% productivity June 16 – November 30: 100% productivity December 1 – December 31: 50% productivity